Check if a digraph is a DAG (Directed Acyclic Graph 有向无环图) or not

Posted rtoax

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Check if a digraph is a DAG (Directed Acyclic Graph 有向无环图) or not相关的知识,希望对你有一定的参考价值。

Check if a digraph is a DAG (Directed Acyclic Graph) or not

Detect Cycle in a Directed Graph - GeeksforGeeks

 

Check if a digraph is a DAG (Directed Acyclic Graph) or not

Given a directed graph, check if it is a DAG (Directed Acyclic Graph) or not. A DAG is a digraph (directed graph) that contains no cycles.

The following graph contains a cycle 0—1—3—0, so it’s not DAG. If we remove edge 3–0 from it, it will become a DAG.

Recommended Read:

Types of edges involved in DFS and relation between them

Arrival and departure time of vertices in DFS

 
We can use Depth–first search (DFS) to solve this problem. The idea is to find if any back-edge is present in the graph or not. A digraph is a DAG if there is no back-edge present in the graph. Recall that a back-edge is an edge from a vertex to one of its ancestors in the DFS tree.

 
Fact: For an edge u —> v in a directed graph, an edge is a back edge if departure[u] < departure[v].

Proof: We have already discussed the relationship between all four types of edges involved in the DFS in the previous post. Following are the relationships we have seen between the departure time for different types of edges involved in a DFS of a directed graph:

Tree edge (u, v): departure[u] > departure[v]
Back edge (u, v): departure[u] < departure[v]
Forward edge (u, v): departure[u] > departure[v]
Cross edge (u, v): departure[u] > departure[v]

Note that for tree edge, forward edge and cross edge, departure[u] > departure[v]. But only for the back edge, the relationship departure[u] < departure[v] holds true. So, it is guaranteed that an edge (u, v) is a back-edge, not some other edge if departure[u] < departure[v].

#include <iostream>
#include <vector>
using namespace std;
 
// Data structure to store a graph edge
struct Edge 
    int src, dest;
;
 
// A class to represent a graph object
class Graph

public:
    // a vector of vectors to represent an adjacency list
    vector<vector<int>> adjList;
 
    // Graph Constructor
    Graph(vector<Edge> const &edges, int n)
    
        // resize the vector to hold `n` elements of type `vector<int>`
        adjList.resize(n);
 
        // add edges to the directed graph
        for (auto &edge: edges) 
            adjList[edge.src].push_back(edge.dest);
        
    
;
 
// Perform DFS on the graph and set the departure time of all vertices of the graph
int DFS(Graph const &graph, int v, vector<bool>
    &discovered, vector<int> &departure, int &time)

    // mark the current node as discovered
    discovered[v] = true;
 
    // do for every edge (v, u)
    for (int u: graph.adjList[v])
    
        // if `u` is not yet discovered
        if (!discovered[u]) 
            DFS(graph, u, discovered, departure, time);
        
    
 
    // ready to backtrack
    // set departure time of vertex `v`
    departure[v] = time++;

 
// Returns true if given directed graph is DAG
bool isDAG(Graph const &graph, int n)

    // keep track of whether a vertex is discovered or not
    vector<bool> discovered(n);
 
    // keep track of the departure time of a vertex in DFS
    vector<int> departure(n);
 
    int time = 0;
 
    // Perform DFS traversal from all undiscovered vertices
    // to visit all connected components of a graph
    for (int i = 0; i < n; i++)
    
        if (!discovered[i]) 
            DFS(graph, i, discovered, departure, time);
        
    
 
    // check if the given directed graph is DAG or not
    for (int u = 0; u < n; u++)
    
        // check if (u, v) forms a back-edge.
        for (int v: graph.adjList[u])
        
            // If the departure time of vertex `v` is greater than equal
            // to the departure time of `u`, they form a back edge.
 
            // Note that departure[u] will be equal to
            // departure[v] only if `u = v`, i.e., vertex
            // contain an edge to itself
            if (departure[u] <= departure[v]) 
                return false;
            
        
    
 
    // no back edges
    return true;

 
int main()

    // vector of graph edges as per the above diagram
    vector<Edge> edges = 
        0, 1, 0, 3, 1, 2, 1, 3, 3, 2, 3, 4, 3, 0, 5, 6, 6, 3
    ;
 
    // total number of nodes in the graph (labelled from 0 to 6)
    int n = 7;
 
    // build a graph from the given edges
    Graph graph(edges, n);
 
    // check if the given directed graph is DAG or not
    if (isDAG(graph, n)) 
        cout << "The graph is a DAG";
    
    else 
        cout << "The graph is not a DAG";
    
 
    return 0;

Output:

The graph is not a DAG

Java

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 import java.util.ArrayList; import java.util.Arrays; import java.util.List;   // A class to store a graph edge class Edge     int source, dest;       public Edge(int source, int dest)              this.source = source;         this.dest = dest;        // A class to represent a graph object class Graph     // A list of lists to represent an adjacency list     List<List<Integer>> adjList = null;       // Constructor     Graph(List<Edge> edges, int n)              adjList = new ArrayList<>();           for (int i = 0; i < n; i++)              adjList.add(new ArrayList<>());                    // add edges to the directed graph         for (Edge edge: edges)              adjList.get(edge.source).add(edge.dest);                 class Main     // Perform DFS on the graph and set the departure time of all     // vertices of the graph     private static int DFS(Graph graph, int v, boolean[] discovered,                            int[] departure, int time)              // mark the current node as discovered         discovered[v] = true;           // do for every edge (v, u)         for (int u: graph.adjList.get(v))                      // if `u` is not yet discovered             if (!discovered[u])                  time = DFS(graph, u, discovered, departure, time);                                 // ready to backtrack         // set departure time of vertex `v`         departure[v] = time++;           return time;            // Returns true if given directed graph is DAG     public static boolean isDAG(Graph graph, int n)              // keep track of whether a vertex is discovered or not         boolean[] discovered = new boolean[n];           // keep track of the departure time of a vertex in DFS         int[] departure = new int[n];           int time = 0;           // Perform DFS traversal from all undiscovered vertices         // to visit all connected components of a graph         for (int i = 0; i < n; i++)                      if (!discovered[i])                  time = DFS(graph, i, discovered, departure, time);                                 // check if the given directed graph is DAG or not         for (int u = 0; u < n; u++)                      // check if (u, v) forms a back-edge.             for (int v: graph.adjList.get(u))                              // If the departure time of vertex `v` is greater than equal                 // to the departure time of `u`, they form a back edge.                   // Note that departure[u] will be equal to                 // departure[v] only if `u = v`, i.e., vertex                 // contain an edge to itself                 if (departure[u] <= departure[v])                      return false;                                                  // no back edges         return true;            public static void main(String[] args)              // List of graph edges as per the above diagram         List<Edge> edges = Arrays.asList(                 new Edge(0, 1), new Edge(0, 3), new Edge(1, 2),                 new Edge(1, 3), new Edge(3, 2), new Edge(3, 4),                 new Edge(3, 0), new Edge(5, 6), new Edge(6, 3)         );           // total number of nodes in the graph (labelled from 0 to 6)         int n = 7;           // build a graph from the given edges         Graph graph = new Graph(edges, n);           // check if the given directed graph is DAG or not         if (isDAG(graph, n))              System.out.println("The graph is a DAG");                  else              System.out.println("The graph is not a DAG");              

Download  Run Code

Output:

The graph is not a DAG

Python

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 # A class to represent a graph object class Graph:     # Constructor     def __init__(self, edges, n):           # A list of lists to represent an adjacency list         self.adjList = [[] for _ in range(n)]           # add edges to the directed graph         for (src, dest) in edges:             self.adjList[src].append(dest)     # Perform DFS on the graph and set the departure time of all vertices of the graph def DFS(graph, v, discovered, departure, time):       # mark the current node as discovered     discovered[v] = True       # do for every edge (v, u)     for u in graph.adjList[v]:         # if `u` is not yet discovered         if not discovered[u]:             time = DFS(graph, u, discovered, departure, time)       # ready to backtrack     # set departure time of vertex `v`     departure[v] = time     time = time + 1       return time     # Returns true if the given directed graph is DAG def isDAG(graph, n):       # keep track of whether a vertex is discovered or not     discovered = [False] * n       # keep track of the departure time of a vertex in DFS     departure = [None] * n       time = 0       # Perform DFS traversal from all undiscovered vertices     # to visit all connected components of a graph     for i in range(n):         if not discovered[i]:             time = DFS(graph, i, discovered, departure, time)       # check if the given directed graph is DAG or not     for u in range(n):           # check if (u, v) forms a back-edge.         for v in graph.adjList[u]:               # If the departure time of vertex `v` is greater than equal             # to the departure time of `u`, they form a back edge.               # Note that `departure[u]` will be equal to `departure[v]`             # only if `u = v`, i.e., vertex contain an edge to itself             if departure[u] <= departure[v]:                 return False       # no back edges     return True     if __name__ == '__main__':       # List of graph edges as per the above diagram     edges = [(0, 1), (0, 3), (1, 2), (1, 3), (3, 2), (3, 4), (3, 0), (5, 6), (6, 3)]       # total number of nodes in the graph (labelled from 0 to 6)     n = 7       # build a graph from the given edges     graph = Graph(edges, n)  

以上是关于Check if a digraph is a DAG (Directed Acyclic Graph 有向无环图) or not的主要内容,如果未能解决你的问题,请参考以下文章

Check if a configuration profile is installed on iOS

Check if a string is NULL or EMPTY using PowerShell

LeetCode 1150. Check If a Number Is Majority Element in a Sorted Array

1232. Check If It Is a Straight Line

LeetCode --- 1232. Check If It Is a Straight Line 解题报告

LeetCode --- 1232. Check If It Is a Straight Line 解题报告

(c)2006-2024 SYSTEM All Rights Reserved IT常识