像写SQL一样去处理内存中的数据,SparkSQL入门教程

Posted Java鱼仔

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了像写SQL一样去处理内存中的数据,SparkSQL入门教程相关的知识,希望对你有一定的参考价值。

(一)概述

SparkSQL可以理解为在原生的RDD上做的一层封装,通过SparkSQL可以在scala和java中写SQL语句,并将结果作为Dataset/DataFrame返回。简单来讲,SparkSQL可以让我们像写SQL一样去处理内存中的数据。

Dataset是一个数据的分布式集合,是Spark1.6之后新增的接口,它提供了RDD的优点和SparkSQL优化执行引擎的优点,一个Dataset相当于RDD+Schema的结合。

Dataset的底层封装是RDD,当RDD的泛型是Row类型时,该类型就可以称为DataFrame。DataFrame是一种表格型的数据结构,就和传统的mysql结构一样,通过DataFrame我们可以更加高效地去执行Sql。

(二)SparkSQL实战

使用SparkSQL首先需要引入相关的依赖:

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-sql_2.12</artifactId>
    <version>3.0.0</version>
</dependency>

该依赖需要和sparkCore保持一致。

SparkSQL的编码主要通过四步:

  1. 创建SparkSession
  2. 获取数据
  3. 执行SQL
  4. 关闭SparkSession
public class SqlTest 
    public static void main(String[] args) 
        SparkSession sparkSession = SparkSession.builder()
                .appName("sql")
                .master("local")
                .getOrCreate();
        Dataset<Row> json = sparkSession.read().json("data/json");
        json.printSchema();
        json.show();
        sparkSession.stop();
    

在data的目录下创建一个名为json的文件

"name":"a","age":23
"name":"b","age":24
"name":"c","age":25
"name":"d","age":26
"name":"e","age":27
"name":"f","age":28

运行项目后输出两个结果,schema结果如下:

Dataset<Row>输出结果如下:

通过SparkSQL可以执行和SQL十分相似的查询操作:

public class SqlTest 
    public static void main(String[] args) 
        SparkSession sparkSession = SparkSession.builder()
                .appName("sql")
                .master("local")
                .getOrCreate();
        Dataset<Row> json = sparkSession.read().json("data/json");
        json.select("age","name").where("age > 26").show();
        sparkSession.stop();
    

在上面的语句中,通过一系列的API实现了SQL查询操作,除此之外,SparkSQL还支持直接写原始SQL语句的操作。

在写SQL语句之前,首先需要让Spark知道对哪个表进行查询,因此需要建立一张临时表,再执行SQL查询:

json.createOrReplaceTempView("json");
sparkSession.sql("select * from json where age > 26").show();

(三)非JSON格式的Dataset创建

在上一节中创建Dataset时使用了最简单的json,因为json自己带有schema结构,因此不需要手动去增加,如果是一个txt文件,就需要在创建Dataset时手动塞入schema。

下面展示读取txt文件的例子,首先创建一个user.txt

a 23
b 24
c 25
d 26

现在我要将上面的这几行变成DataFrame,第一列表示姓名,第二列表示年龄,于是就可以像下面这样操作:

public class SqlTest2 
    public static void main(String[] args) 
        SparkSession sparkSession = SparkSession.builder()
                .appName("sql")
                .master("local")
                .getOrCreate();
        SparkContext sparkContext = sparkSession.sparkContext();
        JavaSparkContext sc = new JavaSparkContext(sparkContext);
        JavaRDD<String> lines = sc.textFile("data/user.txt");
        //将String类型转化为Row类型
        JavaRDD<Row> rowJavaRDD = lines.map(new Function<String, Row>() 
            @Override
            public Row call(String v1) throws Exception 
                String[] split = v1.split(" ");
                return RowFactory.create(
                        split[0],
                        Integer.valueOf(split[1])
                );
            
        );
        //定义schema
        List<StructField> structFields = Arrays.asList(
                DataTypes.createStructField("name", DataTypes.StringType, true),
                DataTypes.createStructField("age", DataTypes.IntegerType, true)
        );
        StructType structType = DataTypes.createStructType(structFields);
        //生成dataFrame
        Dataset<Row> dataFrame = sparkSession.createDataFrame(rowJavaRDD, structType);
        dataFrame.show();
    

(四)通过JDBC创建DataFrame

通过JDBC可直接将对应数据库中的表放入Spark中进行一些处理,下面通过MySQL进行展示。
使用MySQL需要在依赖中引入MySQL的引擎:

<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>5.1.46</version>
</dependency>

接着通过类似JDBC的方式读取MySQL数据:

public class SqlTest3 
    public static void main(String[] args) 
        SparkSession sparkSession = SparkSession.builder()
                .appName("sql")
                .master("local")
                .getOrCreate();
        Map<String,String> options = new HashMap<>();
        options.put("url","jdbc:mysql://127.0.0.1:3306/books");
        options.put("driver","com.mysql.jdbc.Driver");
        options.put("user","root");
        options.put("password","123456");
        options.put("dbtable","book");
        Dataset<Row> jdbc = sparkSession.read().format("jdbc").options(options).load();
        jdbc.show();
        sparkSession.close();
    

读取到的数据是DataFrame,接下来的操作就是对DataFrame的操作了。

(五)总结

SparkSQL是对Spark原生RDD的增强,虽然很多功能通过RDD就可以实现,但是SparkSQL可以更加灵活地实现一些功能。我是鱼仔,我们下期再见。

以上是关于像写SQL一样去处理内存中的数据,SparkSQL入门教程的主要内容,如果未能解决你的问题,请参考以下文章

像写SQL一样去处理内存中的数据,SparkSQL入门教程

Pandas:让你像写SQL一样做数据分析

hive--构建于hadoop之上让你像写SQL一样编写MapReduce程序

如何使用 Spark SQL 作为内存数据库?

spark sql架构和原理——和Hive类似 dataframe无非是内存中的table而已 底层原始数据存储可以是parquet hive json avro等

Pandas教程像写SQL一样用Pandas~