java面试-GC
Posted nullPoint水
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了java面试-GC相关的知识,希望对你有一定的参考价值。
面试题第五弹,如有问题,欢迎指正。
面试题原文链接:https://github.com/tangyouhua/program-resource/blob/master/program-interview/java-baidu-200.md
1.GC是什么?为什么要有GC
GC是垃圾收集的意思,内存处理是编程人员容易出现问题的地方,忘记或者错误的内存回收会导致程序或系统的不稳定甚至崩溃,Java提供的GC功能可以自动监测对象是否超过作用域从而达到自动回收内存的目的,Java语言没有提供释放已分配内存的显示操作方法。Java程序员不用担心内存管理,因为垃圾收集器会自动进行管理。要请求垃圾收集,可以调用下面的方法之一:
System.gc() 或Runtime.getRuntime().gc() 。
垃圾回收可以有效的防止内存泄露,有效的使用可以使用的内存。垃圾回收器通常是作为一个单独的低优先级的线程运行,不可预知的情况下对内存堆中已经死亡的或者长时间没有使用的对象进行清除和回收,程序员不能实时的调用垃圾回收器对某个对象或所有对象进行垃圾回收。回收机制有分代复制垃圾回收、标记垃圾回收、增量垃圾回收等方式。
2.什么时候会导致垃圾回收
1 对象没有引用
2 作用域发生未捕获异常
3 程序在作用域正常执行完毕
4 程序执行了System.exit()
5 程序发生意外终止(被杀进程等)
3.GC是怎么样运行的
通常,GC采用有向图的方式记录和管理堆(heap)中的所有对象。通过这种方式确定哪些对象是"可达的",哪些对象是"不可达的"。当GC确定一些对象为"不可达"时,GC就有责任回收这些内存空间。
作为一个自动的过程,程序员不需要在代码中显示地启动垃圾回收过程。System.gc()和Runtime.gc()用来请求JVM启动垃圾回收。
虽然这个请求机制提供给程序员一个启动 GC 过程的机会,但是启动由 JVM负责。JVM可以拒绝这个请求,所以并不保证这些调用都将执行垃圾回收。启动时机的选择由JVM决定,并且取决于堆内存中Eden区是否可用。JVM将这个选择留给了Java规范的实现,不同实现具体使用的算法不尽相同。
4.新老以及永久区是什么
在运行时,Java的实例被存放在堆内存区域。当一个对象不再被引用时,满足条件就会从堆内存移除。在垃圾回收进程中,这些对象将会从堆内存移除并且内存空间被回收。堆内存以下三个主要区域:
新生代(Young Generation)
Eden空间(Eden space,任何实例都通过Eden空间进入运行时内存区域)
S0 Survivor空间(S0 Survivor space,存在时间长的实例将会从Eden空间移动到S0 Survivor空间或S1 Survivor空间)
S1 Survivor空间
老年代(Old Generation)实例将从S1提升到Tenured(终身代)
永久代(Permanent Generation)包含类、方法等细节的元信息
5.GC 有几种方式?怎么配置
三种方式也可以大体归为两类:跟踪回收,引用计数。美国IBM的沃森研究中心David F.Bacon等人发布的「垃圾回收统一理论」一文阐述了一个理论:任何垃圾回收的思路,无非以上两种的组合,其中一种的改善和进步,必然伴随着另一种的改善和进步。
跟踪回收
跟踪回收的方式独立于程序,定期运行来检查垃圾,需要较长时间的中断。
标记清除
标记清除的方式需要对程序的对象进行两次扫描,第一次从根(Root)开始扫描,被根引用了的对象标记为不是垃圾,不是垃圾的对象引用的对象同样标记为不是垃圾,以此递归。所有不是垃圾的对象的引用都扫描完了之后。就进行第二次扫描,第一次扫描中没有得到标记的对象就是垃圾了,对此进行回收。
复制收集
复制收集的方式只需要对对象进行一次扫描。准备一个「新的空间」,从根开始,对对象进行扫,如果存在对这个对象的引用,就把它复制到「新空间中」。一次扫描结束之后,所有存在于「新空间」的对象就是所有的非垃圾对象。
6.什么时候一个对象会被GC? 如何判断一个对象是否存活
引用计数法
引用计数法就是如果一个对象没有被任何引用指向,则可视之为垃圾。这种方法的缺点就是不能检测到环的存在。
根搜索算法
根搜索算法的基本思路就是通过一系列名为”GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连时,则证明此对象是不可用的。
7.System.gc() Runtime.gc()会做什么事情? 能保证 GC 执行吗
java.lang.System.gc()只是java.lang.Runtime.getRuntime().gc()的简写,两者的行为没有任何不同。
System.gc();就是呼叫java虚拟机的垃圾回收器运行回收内存的垃圾。
不能
8.垃圾回收器可以马上回收内存吗?有什么办法主动通知虚拟机进行垃圾回收?
可以。程序员可以手动执行System.gc(),通知GC运行,但是Java语言规范并不保证GC一定会执行
9.Minor GC 、Major GC、Young GC 与 Full GC分别在什么时候发生
Minor GC
从年轻代空间(包括 Eden 和 Survivor 区域)回收内存被称为 Minor GC。
当 JVM 无法为一个新的对象分配空间时会触发 Minor GC,比如当 Eden 区满了。所以分配率越高,越频繁执行 Minor GC。
内存池被填满的时候,其中的内容全部会被复制,指针会从0开始跟踪空闲内存。Eden 和 Survivor 区进行了标记和复制操作,取代了经典的标记、扫描、压缩、清理操作。所以 Eden 和 Survivor 区不存在内存碎片。写指针总是停留在所使用内存池的顶部。
执行 Minor GC 操作时,不会影响到永久代。从永久代到年轻代的引用被当成 GC roots,从年轻代到永久代的引用在标记阶段被直接忽略掉。
质疑常规的认知,所有的 Minor GC 都会触发“全世界的暂停(stop-the-world)”,停止应用程序的线程。对于大部分应用程序,停顿导致的延迟都是可以忽略不计的。其中的真相就 是,大部分 Eden 区中的对象都能被认为是垃圾,永远也不会被复制到 Survivor 区或者老年代空间。如果正好相反,Eden 区大部分新生对象不符合 GC 条件,Minor GC 执行时暂停的时间将会长很多。
所以 Minor GC 的情况就相当清楚了——每次 Minor GC 会清理年轻代的内存。
Major GC清理Tenured区。
Full GC清理整个heap区,包括Yong区和Tenured区。
10.垃圾回收算法的实现原理
1.Mark-Sweep(标记-清除)算法
这是最基础的垃圾回收算法,之所以说它是最基础的是因为它最容易实现,思想也是最简单的。标记-清除算法分为两个阶段:标记阶段和清除阶段。标记阶段的任务是标记出所有需要被回收的对象,清除阶段就是回收被标记的对象所占用的空间。
标记-清除算法实现起来比较容易,但是有一个比较严重的问题就是容易产生内存碎片,碎片太多可能会导致后续过程中需要为大对象分配空间时无法找到足够的空间而提前触发新的一次垃圾收集动作。
2.Copying(复制)算法
为了解决Mark-Sweep算法的缺陷,Copying算法就被提了出来。它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用的内存空间一次清理掉,这样一来就不容易出现内存碎片的问题。
3.Mark-Compact(标记-整理)算法
为了解决Copying算法的缺陷,充分利用内存空间,提出了Mark-Compact算法。该算法标记阶段和Mark-Sweep一样,但是在完成标记之后,它不是直接清理可回收对象,而是将存活对象都向一端移动,然后清理掉端边界以外的内存。
4.Generational Collection(分代收集)算法
分代收集算法是目前大部分JVM的垃圾收集器采用的算法。它的核心思想是根据对象存活的生命周期将内存划分为若干个不同的区域。一般情况下将堆区划分为老年代(Tenured Generation)和新生代(Young Generation),老年代的特点是每次垃圾收集时只有少量对象需要被回收,而新生代的特点是每次垃圾回收时都有大量的对象需要被回收,那么就可以根据不同代的特点采取最适合的收集算法。
注意,在堆区之外还有一个代就是永久代(Permanet Generation),它用来存储class类、常量、方法描述等。对永久代的回收主要回收两部分内容:废弃常量和无用的类。
11.如果对象的引用被置为null,垃圾收集器是否会立即释放对象占用的内存?
不会
12.垃圾回收的最佳做法是什么
没有最佳做法 应该是有更合适的做法
13.GC收集器有哪些
Serial收集器
串行收集器是最古老,最稳定以及效率高的收集器,可能会产生较长的停顿,只使用一个线程去回收。新生代、老年代使用串行回收;新生代复制算法、老年代标记-压缩;垃圾收集的过程中会Stop The World(服务暂停)
ParNew收集器
ParNew收集器其实就是Serial收集器的多线程版本。新生代并行,老年代串行;新生代复制算法、老年代标记-压缩
Parallel收集器
Parallel Scavenge收集器类似ParNew收集器,Parallel收集器更关注系统的吞吐量。可以通过参数来打开自适应调节策略,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或最大的吞吐量;也可以通过参数控制GC的时间不大于多少毫秒或者比例;新生代复制算法、老年代标记-压缩
Parallel Old 收集器
Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。这个收集器是在JDK 1.6中才开始提供
CMS收集器
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用都集中在互联网站或B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。
从名字(包含“Mark Sweep”)上就可以看出CMS收集器是基于“标记-清除”算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为4个步骤,包括:
初始标记(CMS initial mark)
并发标记(CMS concurrent mark)
重新标记(CMS remark)
并发清除(CMS concurrent sweep)
其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,并发标记阶段就是进行GC Roots Tracing的过程,而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。
由于整个过程中耗时最长的并发标记和并发清除过程中,收集器线程都可以与用户线程一起工作,所以总体上来说,CMS收集器的内存回收过程是与用户线程一起并发地执行。老年代收集器(新生代使用ParNew)
优点:并发收集、低停顿
缺点:产生大量空间碎片、并发阶段会降低吞吐量
G1收集器
G1是目前技术发展的最前沿成果之一,HotSpot开发团队赋予它的使命是未来可以替换掉JDK1.5中发布的CMS收集器。与CMS收集器相比G1收集器有以下特点:
1. 空间整合,G1收集器采用标记整理算法,不会产生内存空间碎片。分配大对象时不会因为无法找到连续空间而提前触发下一次GC。
2. 可预测停顿,这是G1的另一大优势,降低停顿时间是G1和CMS的共同关注点,但G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为N毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒,这几乎已经是实时Java(RTSJ)的垃圾收集器的特征了。
上面提到的垃圾收集器,收集的范围都是整个新生代或者老年代,而G1不再是这样。使用G1收集器时,Java堆的内存布局与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔阂了,它们都是一部分(可以不连续)Region的集合。
14.串行(serial)收集器和吞吐量(throughput)收集器的区别是什么
吞吐量收集器使用并行版本的新生代垃圾收集器,它用于中等规模和大规模数据的应用程序。而串行收集器对大多数的小应用(在现代处理器上需要大概100M左右的内存)就足够了。
15.CMS 收集器 与 G1 收集器的特点与区别
1.Serial收集器
一个单线程的收集器,在进行垃圾收集时候,必须暂停其他所有的工作线程直到它收集结束。
特点:CPU利用率最高,停顿时间即用户等待时间比较长。
适用场景:小型应用
通过JVM参数-XX:+UseSerialGC可以使用串行垃圾回收器。
2.Parallel收集器
采用多线程来通过扫描并压缩堆
特点:停顿时间短,回收效率高,对吞吐量要求高。
适用场景:大型应用,科学计算,大规模数据采集等。
通过JVM参数 XX:+USeParNewGC 打开并发标记扫描垃圾回收器。
3.CMS收集器
采用“标记-清除”算法实现,使用多线程的算法去扫描堆,对发现未使用的对象进行回收。
(1)初始标记
(2)并发标记
(3)并发预处理
(4)重新标记
(5)并发清除
(6)并发重置
特点:响应时间优先,减少垃圾收集停顿时间
适应场景:服务器、电信领域等。
通过JVM参数 -XX:+UseConcMarkSweepGC设置
4.G1收集器
在G1中,堆被划分成 许多个连续的区域(region)。采用G1算法进行回收,吸收了CMS收集器特点。
特点:支持很大的堆,高吞吐量
--支持多CPU和垃圾回收线程
--在主线程暂停的情况下,使用并行收集
--在主线程运行的情况下,使用并发收集
实时目标:可配置在N毫秒内最多只占用M毫秒的时间进行垃圾回收
通过JVM参数 –XX:+UseG1GC 使用G1垃圾回收器
16.JVM 中一次完整的 GC 流程是怎样的? 对象如何晋升到老年代
对象晋升老生代一共有三个可能:
1.当对象达到成年,经历过15次GC(默认15次,可配置),对象就晋升为老生代
2.大的对象会直接在老生代创建
3.新生代跟幸存区内存不足时,对象可能晋升到老生代
17.吞吐量优先和响应优先的垃圾收集器选择
(1) 吞吐量优先的并行收集器
参数配置:
1, -Xmx4g -Xms4g -Xmn2g -Xss200k -XX:+UseParallelGC -XX:ParallelGCThreads=8
说明:选择Parallel Scavenge收集器,然后配置多少个线程进行回收,最好与处理器数目相等。
2,-Xmx4g -Xms4g -Xmn2g -Xss200k -XX:+UseParallelGC -XX:ParallelGCThreads=8 -XX:+UseParallelOldGC
说明:配置老年代使用Parallel Old
3,-Xmx4g -Xms4g -Xmn2g -Xss200k -XX:+UseParallelGC -XX:MaxGCPauseMills=100
说明:设置每次年轻代垃圾回收的最长时间。如何不能满足,那么就会调整年轻代大小,满足这个设置
4,-Xmx4g -Xms4g -Xmn2g -Xss200k -XX:+UseParallelGC -XX:MaxGCPauseMills=100 -XX:+UseAdaptiveSizePolicy
说明:并行收集器会自动选择年轻代区大小和Survivor区的比例。
(2)响应时间优先的并发收集器
1, -Xmx4g -Xms4g -Xmn2g -Xss200k -XX:+UseConcMarkSweepGC -XX:+UseParNewGC
说明:设置老年代的收集器是CMS,年轻代是ParNew
2,-Xmx4g -Xms4g -Xmn2g -Xss200k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection
说明:首先设置运行多少次GC后对内存空间进行压缩,整理。同时打开对年老代的压缩(会影响性能)
18.JVM的永久代中会发生垃圾回收吗
垃圾回收不会发生在永久代,如果永久代满了或者是超过了临界值,会触发完全垃圾回收(Full GC)。如果你仔细查看垃圾收集器的输出信息,就会发现永久代也是被回收的。这就是为什么正确的永久代大小对避免Full GC是非常重要的原因。请参考下Java8:从永久代到元数据区
(注:Java8中已经移除了永久代,新加了一个叫做元数据区的native内存区)
以上是关于java面试-GC的主要内容,如果未能解决你的问题,请参考以下文章