Java虚拟机:垃圾收集器

Posted 程序员囧辉

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java虚拟机:垃圾收集器相关的知识,希望对你有一定的参考价值。

概述

如果说垃圾收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。下图展示了7种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明它们可以搭配使用。虚拟机所处的区域,则表示它是属于新生代收集器还是老年代收集器。

 


1.垃圾收集器介绍 

Serial收集器

GC日志标识:DefNew

Serial收集器是最基本、发展历史最悠久的收集器,曾经(在JDK 1.3.1之前)是虚拟机新生代收集的唯一选择。这个收集器是一个单线程的收集器,但它的“单线程”的意义并不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束。

Serial收集器简单而高效、没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率,对于运行在Client模式下的虚拟机来说是一个很好的选择。Serial收集器的工作过程如图所示:

Java虚拟机:垃圾收集器 Serial/Serial Old收集器运行示意图

 

ParNew收集器

GC日志标识:ParNew

ParNew收集器其实就是Serial收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为包括Serial收集器可用的所有控制参数、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一样,在实现上,这两种收集器也共用了相当多的代码。ParNew收集器的工作过程如图所示:

Java虚拟机:垃圾收集器

ParNew/Serial Old收集器运行示意图


ParNew收集器除了多线程收集之外,其他与Serial收集器相比并没有太多创新之处,但它却是许多运行在Server模式下的虚拟机中首选的新生代收集器,其中有一个与性能无关但很重要的原因是,除了Serial收集器外,目前只有它能与CMS收集器配合工作。在JDK 1.5时期,HotSpot推出了一款在强交互应用中几乎可认为有划时代意义的垃圾收集器——CMS收集器(Concurrent Mark Sweep),这款收集器是HotSpot虚拟机中第一款真正意义上的并发(Concurrent)收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。


不幸的是,CMS作为老年代的收集器,却无法与JDK 1.4.0中已经存在的新生代收集器 Parallel Scavenge配合工作(Parallel Scavenge收集器及后面提到的G1收集器都没有使用传统的GC收集器代码框架,而另外独立实现),所以在JDK 1.5中使用CMS来收集老年代的时候,新生代只能选择ParNew或者Serial收集器中的一个。


ParNew收集器在单CPU的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百地保证可以超越Serial收集器。当然,随着可以使用的CPU的数量的增加,它对于GC时系统资源的有效利用还是很有好处的。它默认开启的收集线程数与CPU的数量相同,在CPU非常多(譬如32个,现在CPU动辄就4核加超线程,服务器超过32个逻辑CPU的情况越来越多了)的环境下,可以使用-XX:ParallelGCThreads参数来限制垃圾收集的线程数。


并行与并发:

并行(Parallel):指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。

并发(Concurrent):指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),用户程序在继续运行,而垃圾收集程序运行于另一个CPU上。


Parallel Scavenge收集器

GC日志标识:PSYoungGen

Parallel Scavenge收集器是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器。它的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间),虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。


停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验,而高吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。


GC停顿时间缩短时以牺牲吞吐量和新生代空间换来的:系统把新生代调小一些,收集300MB新生代肯定比收集500MB快吧,这也直接导致垃圾收集发生得更频繁一些,原来10秒收集一次、每次停顿100毫秒,现在变成5秒收集一次、每次停顿70毫秒。停顿时间的确在下降,但吞吐量也降下来了。


由于与吞吐量关系密切,Parallel Scavenge收集器也经常称为“吞吐量优先”收集器。除上述两个参数之外,Parallel Scavenge收集器还有一个参数-XX:+UseAdaptiveSizePolicy值得关注。这是一个开关参数,当这个参数打开之后,就不需要手工指定新生代的大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象年龄(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种调节方式称为GC自适应的调节策略(GC Ergonomics)。


Serial Old收集器

GC日志标识:Tenured

Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用“标记-整理”算法。这个收集器的主要意义也是在于给Client模式下的虚拟机使用。如果在Server模式下,那么它主要还有两大用途:一种用途是在JDK 1.5以及之前的版本中与Parallel Scavenge 收集器搭配使用[1],另一种用途就是作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure时使用。Serial Old收集器的工作过程如图所示:

Java虚拟机:垃圾收集器 Serial/Serial Old收集器运行示意图


Parallel Old收集器

GC日志标识:ParOldGen

Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。这个收集器是在JDK 1.6中才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于比较尴尬的状态。原因是,如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old(PS MarkSweep)收集器外别无选择。


直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的应用组合,在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old。Parallel Old收集器的工作过程如图所示:

Java虚拟机:垃圾收集器 

Parallel Scavenge/Parallel Old收集器运行示意图


CMS(Concurrent Mark Sweep)收集器

GC日志标识:以CMS开头

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。


从名字(包含“Mark Sweep”)上就可以看出,CMS收集器是基于“标记—清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为6个步骤,包括:初始标记(CMS-initial-mark、并发标记CMS-concurrent-mark、预处理(CMS-concurrent-preclean)、重新标记CMS-Final-Remark、并发清除CMS-concurrent-sweep、重置CMS-concurrent-reset)


  1. 初始标记:仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,该阶段会Stop The World。

  2. 并发标记:进行GC RootsTracing 的过程。因为该阶段是并发执行的,在运行期间可能发生新生代的对象晋升到老年代、或者是直接在老年代分配对象、或者更新老年代对象的引用关系等,对于这些对象,都是需要进行重新标记的,否则有些对象就会被遗漏,发生漏标的情况。为了提高重新标记的效率,该阶段会把上述对象所在的Card标识为Dirty,后续只需扫描这些Dirty Card的对象,避免扫描整个老年代。

  3. 预处理:1)在并发标记阶段,如果老年代中有对象内部引用发生变化,会把所在的Card标记为Dirty(这里使用一个类似CardTable的数据结构,叫ModUnionTable),通过扫描这些Table,重新标记那些在并发标记阶段引用被更新的对象(晋升到老年代的对象、原本就在老年代的对象)。2) 处理新生代已经发现的引用,比如在并发阶段,在Eden区中分配了一个A对象,A对象引用了一个老年代对象B(这个B之前没有被标记),在这个阶段就会标记对象B为活跃对象。

    可中断的预处理该阶段发生的前提是新生代Eden区的内存使用量大于参数CMSScheduleRemarkEdenSizeThreshold(默认是2M) ,如果新生代的对象太少,就没有必要执行该阶段,直接执行重新标记阶段。该阶段主要做两件事:1)处理From和To区的对象,标记可达的老年代对象;2)跟预处理一样,扫描处理Dirty Card中的对象。

  4. 重新标记:为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。

  5. 并发处理:并发处理标记的对象。

  6. 重置:重置线程,为下一次GC做准备。

由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。


CMS收集器收集日志如下:

Java虚拟机:垃圾收集器


CMS收集器工作过程如图所示:

Java虚拟机:垃圾收集器

Concurrent Mark Sweep收集器运行示意图

 

CMS是一款优秀的收集器,它的主要优点在名字上已经体现出来了:并发收集、低停顿,Sun公司的一些官方文档中也称之为并发低停顿收集器(Concurrent Low Pause Collector)。但是CMS还远达不到完美的程度,它有以下3个明显的缺点:


CMS收集器对CPU资源非常敏感。其实,面向并发设计的程序都对CPU资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但是会因为占用了一部分线程(或者说CPU资源)而导致应用程序变慢,总吞吐量会降低。CMS默认启动的回收线程数是(CPU数量+3)/4。


CMS收集器无法处理浮动垃圾(Floating Garbage),可能出现“Concurrent Mode Failure”失败而导致另一次Full GC的产生。由于CMS并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在当次收集中处理掉它们,只好留待下一次GC时再清理掉。这一部分垃圾就称为“浮动垃圾”。也是由于在垃圾收集阶段用户线程还需要运行,那也就还需要预留有足够的内存空间给用户线程使用,因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分空间提供并发收集时的程序运作使用。在JDK 1.5的默认设置下,CMS收集器当老年代使用了68%的空间后就会被激活,这是一个偏保守的设置,如果在应用中老年代增长不是太快,可以适当调高参数-XX:CMSInitiatingOccupancyFraction的值来提高触发百分比,以便降低内存回收次数从而获取更好的性能,在JDK 1.6中,CMS收集器的启动阈值已经提升至92%。要是CMS运行期间预留的内存无法满足程序需要,就会出现一次“Concurrent Mode Failure”失败,这时虚拟机将启动后备预案:临时启用Serial Old收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。所以说参数-XX:CM SInitiatingOccupancyFraction设置得太高很容易导致大量“Concurrent Mode Failure”失败,性能反而降低。


还有最后一个缺点,CMS是一款基于“标记—清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很大空间剩余,但是无法找到足够大的连续空间来分配当前对象,不得不提前触发一次Full GC。为了解决这个问题,CMS收集器提供了一个-XX:+UseCMSCompactAtFullCollection开关参数(默认就是开启的),用于在CMS收集器顶不住要进行FullGC时开启内存碎片的合并整理过程,内存整理的过程是无法并发的,空间碎片问题没有了,但停顿时间不得不变长。虚拟机设计者还提供了另外一个参数-XX:CMSFullGCsBeforeCompaction,这个参数是用于设置执行多少次不压缩的Full GC后,跟着来一次带压缩的(默认值为0,表示每次进入Full GC时都进行碎片整理)。


G1(Garbage-First)收集器

G1(Garbage-First)收集器是当今收集器技术发展的最前沿成果之一。G1是一款面向服务端应用的垃圾收集器。HotSpot开发团队赋予它的使命是(在比较长期的)未来可以替换掉JDK 1.5中发布的CMS收集器。与其他GC收集器相比,G1具备如下特点。


并行与并发:G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU(CPU或者CPU核心)来缩短Stop-The-World停顿的时间,部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行。

分代收集:与其他收集器一样,分代概念在G1中依然得以保留。虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但它能够采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次GC的旧对象以获取更好的收集效果。

空间整合:与CMS的“标记—清理”算法不同,G1从整体来看是基于“标记—整理”算法实现的收集器,从局部(两个Region之间)上来看是基于“复制”算法实现的,但无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,收集后能提供规整的可用内存。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。

可预测的停顿:这是G1相对于CMS的另一大优势,降低停顿时间是G1和CMS共同的关注点,但G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒,这几乎已经是实时Java(RTSJ)的垃圾收集器的特征了。


在G1之前的其他收集器进行收集的范围都是整个新生代或者老年代,而G1不再是这样。使用G1收集器时,Java堆的内存布局就与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region,如下图所示),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分Region(不需要连续)的集合。

Java虚拟机:垃圾收集器

在G1中,还有一种特殊的区域,叫Humongous区域。 如果一个对象占用的空间超过了分区容量50%以上,G1收集器就认为这是一个巨型对象。这些巨型对象,默认直接会被分配在年老代,但是如果它是一个短期存在的巨型对象,就会对垃圾收集器造成负面影响。为了解决这个问题,G1划分了一个Humongous区,它用来专门存放巨型对象。如果一个H区装不下一个巨型对象,那么G1会寻找连续的H分区来存储。为了能找到连续的H区,有时候不得不启动Full GC。


G1收集器之所以能建立可预测的停顿时间模型,是因为它可以有计划地避免在整个Java堆中进行全区域的垃圾收集。G1跟踪各个Region里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region(这也就是Garbage-First名称的来由)。这种使用Region划分内存空间以及有优先级的区域回收方式,保证了G1收集器在有限的时间内可以获取尽可能高的收集效率。


一个对象分配在某个Region中,它并非只能被本Region中的其他对象引用,而是可以与整个Java堆任意的对象发生引用关系。那在做可达性判定确定对象是否存活的时候,岂不是还得扫描整个Java堆才能保证准确性?这个问题其实并非在G1中才有,只是在G1中更加突出而已。在以前的分代收集中,新生代的规模一般都比老年代要小许多,新生代的收集也比老年代要频繁许多,那回收新生代中的对象时也面临相同的问题,如果回收新生代时也不得不同时扫描老年代的话,那么Minor GC的效率可能下降不少。



在G1收集器中,也有和上面一样的CardTable。另外G1中每个Region还有一个与之对应的Remembered Set,虚拟机发现程序在对Reference类型的数据进行写操作时,会产生一个 Write Barrier暂时中断写操作,检查Reference引用的对象是否处于不同的Region之中,如果是,便通过CardTable把相关引用信息记录到被引用对象所属的Region的Remembered Set之中。当进行内存回收时,在GC根节点的枚举范围中加入Remembered Set即可保证不对全堆扫描也不会有遗漏。

Java虚拟机:垃圾收集器


G1收集器的垃圾收集分两种:Young GC和Mixed GC。


G1:Young GC

Young GC大致可以分为5个阶段:

  1. 根扫描:静态和本地对象被扫描。

  2. 更新RS:处理dirty card队列更新RS。

  3. 处理RS:检测从年轻代指向年老代的对象。

  4. 对象拷贝:拷贝存活的对象到survivor/old区域。

  5. 处理引用队列:软引用,弱引用,虚引用处理。


G1:Mixed GC

Mixed GC大致可划分为全局并发标记(global concurrent marking)和拷贝存活对象(evacuation)两个大部分

global concurrent marking是基于SATB形式的并发标记,包括以下4个阶段:初始标记(Initial Marking)、并发标记(Concurrent Marking)、最终标记(Final Marking)、清理(Clean Up)。


  1. 初始标记(initial marking):暂停阶段。扫描根集合,标记所有从根集合可直接到达的对象并将它们的字段压入扫描栈(marking stack)中等到后续扫描。G1使用外部的bitmap来记录mark信息,而不使用对象头的mark word里的mark bit。在分代式G1模式中,初始标记阶段借用young GC的暂停,因而没有额外的、单独的暂停阶段。 

  2. 并发标记(concurrent marking):并发阶段。不断从扫描栈取出引用递归扫描整个堆里的对象图。每扫描到一个对象就会对其标记,并将其字段压入扫描栈。重复扫描过程直到扫描栈清空。过程中还会扫描SATB write barrier所记录下的引用。 

  3. 最终标记(final marking,在实现中也叫remarking):暂停阶段。在完成并发标记后,每个Java线程还会有一些剩下的SATB write barrier记录的引用尚未处理。这个阶段就负责把剩下的引用处理完。同时这个阶段也进行弱引用处理(reference processing)。 注意这个暂停与CMS的remark有一个本质上的区别,那就是这个暂停只需要扫描SATB buffer,而CMS的remark需要重新扫描mod-union table里的dirty card外加整个根集合,而此时整个young gen(不管对象死活)都会被当作根集合的一部分,因而CMS remark有可能会非常慢。 

  4. 清理(cleanup):暂停阶段。清点和重置标记状态。这个阶段有点像mark-sweep中的sweep阶段,不过不是在堆上sweep实际对象,而是在marking bitmap里统计每个region被标记为活的对象有多少。这个阶段如果发现完全没有活对象的region就会将其整体回收到可分配region列表中。 


Evacuation阶段是全暂停的。它负责把一部分region里的活对象拷贝到空region里去,然后回收原本的region的空间。 

Evacuation阶段可以自由选择任意多个region来独立收集构成收集集合(collection set,简称CSet),靠per-region remembered set(简称RSet)实现。这是regional garbage collector的特征。 

在选定CSet后,evacuation其实就跟ParallelScavenge的young GC的算法类似,采用并行copying(或者叫scavenging)算法把CSet里每个region里的活对象拷贝到新的region里,整个过程完全暂停。从这个意义上说,G1的evacuation跟传统的mark-compact算法的compaction完全不同:前者会自己从根集合遍历对象图来判定对象的生死,不需要依赖global concurrent marking的结果,有就用,没有拉倒;而后者则依赖于之前的mark阶段对对象生死的判定。 

纯G1模式下,CSet的选定完全靠统计模型找处收益最高、开销不超过用户指定的上限的若干region。由于每个region都有RSet覆盖,要单独evacuate任意一个或多个region都没问题。 


2.理解GC日志

每一种收集器的日志形式都是由它们自身的实现所决定的,换而言之,每个收集器的日志格式都可以不一样。但虚拟机设计者为了方便用户阅读,将各个收集器的日志都维持一定的共性,例如以下两段典型的GC日志:

[GC [PSYoungGen: 7144K->648K(9216K)] 7144K->6792K(19456K), 0.0029932 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

[Full GC [PSYoungGen: 648K->0K(9216K)] [ParOldGen: 6144K->6638K(10240K)] 6792K->6638K(19456K) [PSPermGen: 2661K->2660K(21504K)], 0.0093732 secs] [Times: user=0.01 sys=0.00, real=0.01 secs]

  • “[GC”和“[Full GC”:表示这次垃圾收集的停顿类型,而不是用来区分新生代GC还是老年代GC的。如果是调用System.gc()方法所触发的收集,那么在这里将显示“[Full GC(System)”。

  • “[DefNew”、“[Tenured”、“[Perm”:表示GC发生的区域,这里显示的区域名称与使用的GC收集器是密切相关的,例如上面样例所使用的Serial收集器中的新生代名为“Default New Generation”,所以显示的是“[DefNew”。如果是ParNew收集器,新生代名称就会变为“[ParNew”,意为“Parallel New Generation”。如果采用Parallel Scavenge收集器,那它配套的新生代称为“PSYoungGen”,老年代和永久代同理,名称也是由收集器决定的。

  • “7144K->648K(9216K)”:表示“GC前该内存区域已使用容量->GC后该内存区域已使用容量(该内存区域总容量)”。而在方括号之外的“7144K->6792K(19456K)”表示“GC前Java堆已使用容量->GC后Java堆已使用容量(Java堆总容量)”。

  • “0.0029932 secs”:表示该内存区域GC所占用的时间,单位是秒。有的收集器会给出更具体的时间数据,如“[Times:user=0.01 sys=0.00,real=0.02 secs]”,这里面的user、sys和real与Linux的time命令所输出的时间含义一致,分别代表用户态消耗的CPU时间、内核态消耗的CPU时间和操作从开始到结束所经过的墙钟时间(Wall Clock Time)。CPU时间与墙钟时间的区别是,墙钟时间包括各种非运算的等待耗时,例如等待磁盘I/O、等待线程阻塞,而CPU时间不包括这些耗时,但当系统有多CPU或者多核的话,多线程操作会叠加这些CPU时间,所以读者看到user或sys时间超过real时间是完全正常的。


3.垃圾收集器参数总结


4.HotSpot GC分类

针对HotSpot VM的实现,它里面的GC其实准确分类只有两大种:

  1. Partial GC:并不收集整个GC堆的模式,具体如下:

    1. Young GC/ Minor GC:只收集young gen的GC。

    2. Old GC:只收集old gen的GC。只有CMS的concurrent collection是这个模式。

    3. Mixed GC:收集整个young gen以及部分old gen的GC。只有G1有这个模式。

  2. Full GC/Major GC:收集整个GC堆的模式,包括young gen、old gen、perm gen(如果存在的话)等所有部分的模式。

 

5.HotSpot GC触发条件

最简单的分代式GC策略,按HotSpot VM的Serial GC的实现来看,触发条件是:

Young GC:当young gen中的Eden区分配满的时候触发。注意Young GC中有部分存活对象会晋升到old gen,所以Young GC后old gen的占用量通常会有所升高。

Full GC:当准备要触发一次Young GC时,如果发现统计数据说之前Young GC的平均晋升大小比目前old gen剩余的空间大,则不会触发Young GC而是转为触发Full GC(因为HotSpot VM的GC里,除了CMS的concurrent collection之外,其它能收集old gen的GC都会同时收集整个GC堆,包括young gen,所以不需要事先触发一次单独的Young GC);或者,如果有perm gen的话,要在perm gen分配空间但已经没有足够空间时,也要触发一次Full GC;或者System.gc()、heap dump带GC,默认也是触发Full GC。


6.Full GC后老年代的空间反而变小?

HotSpot的Full GC实现中,默认young gen里所有活的对象都要晋升到old gen,实在晋升不了才会留在young gen。假如做full GC的时候,old gen里的对象几乎没有死掉的,而young gen又要晋升活对象上来,那么full GC结束后old gen的使用量自然就上升了。


—————END—————




以上是关于Java虚拟机:垃圾收集器的主要内容,如果未能解决你的问题,请参考以下文章

java虚拟机学习--垃圾收集器总结

Java虚拟机垃圾回收: 7种垃圾收集器(转载)

jvm,深入理解java虚拟机,垃圾收集算法与垃圾收集器

Java虚拟机浅谈——垃圾收集器与内存分配策略

Java虚拟机9:垃圾收集(GC)-4(垃圾收集器)

Java虚拟机垃圾收集器分析 基本回收算法 垃圾回收器