Java虚拟机G1垃圾收集器详解
Posted 大数据实习生
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java虚拟机G1垃圾收集器详解相关的知识,希望对你有一定的参考价值。
G1(Garbage-First)收集器是当今收集器技术发展的最前沿成果之一,早在JDK 1.7刚刚确立项目目标,Sun公司给出的JDK 1.7 RoadMap里面,它就被视为JDK 1.7中HotSpot虚拟机的一个重要进化特征。从JDK 6u14中开始就有Early Access版本的G1收集器供开发人员实验、试用,由此开始G1收集器的“Experimental”状态持续了数年时间,直至JDK 7u4,Sun公司才认为它达到足够成熟的商用程度,移除了“Experimental”的标识。
G1是一款面向服务端应用的垃圾收集器。HotSpot开发团队赋予它的使命是(在比较长期的)未来可以替换掉JDK 1.5中发布的CMS收集器。与其他GC收集器相比,G1具备如下特点。
并行与并发:G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU(CPU或者CPU核心)来缩短Stop-The-World停顿的时间,部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行。
分代收集:与其他收集器一样,分代概念在G1中依然得以保留。虽然G1可以不需其他收集器配合就能独立管理整个GC堆,但它能够采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次GC的旧对象以获取更好的收集效果。
空间整合:与CMS的“标记-清理”算法不同,G1从整体看来是基于“标记-整理”算法实现的收集器,从局部(两个Region之间)上看是基于“复制”算法实现,无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,收集后能提供规整的可用内存。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。
可预测的停顿:这是G1相对于CMS的另外一大优势,降低停顿时间是G1和CMS共同的关注点,但G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒,这几乎已经是实时Java(RTSJ)的垃圾收集器特征了。
使用G1收集器时,Java堆的内存布局与就与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分Region(不需要连续)的集合。
G1收集器之所以能建立可预测的停顿时间模型,是因为它可以有计划地避免在整个Java堆中进行全区域的垃圾收集。G1跟踪各个Region里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回价值最大的Region(这也就是Garbage-First名称的来由)。这种使用Region划分内存空间以及有优先级的区域回收方式,保证了G1收集器在有限的时间内获可以获取尽可能高的收集效率。
G1把内存“化整为零”的思路,理解起来似乎很容易,但其中的实现细节却远远没有想象中那样简单,否则也不会从2004年Sun实验室发表第一篇G1的论文开始直到今天(将近10年时间)才开发出G1的商用版。笔者以一个细节为例:把Java堆分为多个Region后,垃圾收集是否就真的能以Region为单位进行了?听起来顺理成章,再仔细想想就很容易发现问题所在:Region不可能是孤立的。一个对象分配在某个Region中,它并非只能被本Region中的其他对象引用,而是可以与整个Java堆任意的对象发生引用关系。那在做可达性判定确定对象是否存活的时候,岂不是还得扫描整个Java堆才能保证准确性?这个问题其实并非在G1中才有,只是在G1中更加突出而已。在以前的分代收集中,新生代的规模一般都比老年代要小许多,新生代的收集也比老年代要频繁许多,那回收新生代中的对象时也面临相同的问题,如果回收新生代时也不得不同时扫描老年代的话,那么Minor GC的效率可能下降不少。
在G1收集器中,Region之间的对象引用以及其他收集器中的新生代与老年代之间的对象引用,虚拟机都是使用Remembered Set来避免全堆扫描的。G1中每个Region都有一个与之对应的Remembered Set,虚拟机发现程序在对Reference类型的数据进行写操作时,会产生一个Write Barrier暂时中断写操作,检查Reference引用的对象是否处于不同的Region之中(在分代的例子中就是检查是否老年代中的对象引用了新生代中的对象),如果是,便通过CardTable把相关引用信息记录到被引用对象所属的Region的Remembered Set之中。当进行内存回收时,在GC根节点的枚举范围中加入Remembered Set即可保证不对全堆扫描也不会有遗漏。
如果不计算维护Remembered Set的操作,G1收集器的运作大致可划分为以下几个步骤:
初始标记(Initial Marking)
并发标记(Concurrent Marking)
最终标记(Final Marking)
筛选回收(Live Data Counting and Evacuation)
对CMS收集器运作过程熟悉的读者,一定已经发现G1的前几个步骤的运作过程和CMS有很多相似之处。初始标记阶段仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS(Next Top at Mark Start)的值,让下一阶段用户程序并发运行时,能在正确可用的Region中创建新对象,这阶段需要停顿线程,但耗时很短。并发标记阶段是从GC Root开始对堆中对象进行可达性分析,找出存活的对象,这阶段耗时较长,但可与用户程序并发执行。而最终标记阶段则是为了修正在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程Remembered Set Logs里面,最终标记阶段需要把Remembered Set Logs的数据合并到Remembered Set中,这阶段需要停顿线程,但是可并行执行。最后在筛选回收阶段首先对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间来制定回收计划,从Sun公司透露出来的信息来看,这个阶段其实也可以做到与用户程序一起并发执行,但是因为只回收一部分Region,时间是用户可控制的,而且停顿用户线程将大幅提高收集效率。通过图3-11可以比较清楚地看到G1收集器的运作步骤中并发和需要停顿的阶段。
由于目前G1成熟版本的发布时间还很短,G1收集器几乎可以说还没有经过实际应用的考验,网络上关于G1收集器的性能测试也非常贫乏,到目前为止,笔者还没有搜索到有关的生产环境下的性能测试报告。强调“生产环境下的测试报告”是因为对于垃圾收集器来说,仅仅通过简单的Java代码写个Microbenchmark程序来创建、移除Java对象,再用-XX:+PrintGCDetails等参数来查看GC日志是很难做到准确衡量其性能的。因此,关于G1收集器的性能部分,笔者引用了Sun实验室的论文《Garbage-First Garbage Collection》中的一段测试数据。
在反应停顿时间的软实时目标(Soft Real-Time Goal)测试中,横向是两个测试软件的时间片段配置,单位是毫秒,以(X/Y)的形式表示,代表在Y毫秒内较大允许GC时间为X毫秒(对于CMS收集器,无法直接指定这个目标,通过调整分代大小的方式大致模拟)。纵向是两个软件在对应配置和不同的Java堆容量下的测试结果,V%、avgV%和wV%分别代表的含义如下。
在反应停顿时间的软实时目标(Soft Real-Time Goal)测试中,横向是两个测试软件的时间片段配置,单位是毫秒,以(X/Y)的形式表示,代表在Y毫秒内较大允许GC时间为X毫秒(对于CMS收集器,无法直接指定这个目标,通过调整分代大小的方式大致模拟)。纵向是两个软件在对应配置和不同的Java堆容量下的测试结果,V%、avgV%和wV%分别代表的含义如下。
V%:表示测试过程中,软实时目标失败的概率,软实时目标失败即某个时间片段中实际GC时间超过了允许的较大GC时间。
avgV%:表示在所有实际GC时间超标的时间片段里,实际GC时间超过较大GC时间的平均百分比(实际GC时间减去允许较大GC时间,再除以总时间片段)。
wV%:表示在测试结果最差的时间片段里,实际GC时间占用执行时间的百分比。
测试结果见表3-1。
从表3-1所示的结果可见,对于telco来说,软实时目标失败的概率控制在0.5%~0.7%之间,SPECjbb就要差一些,但也控制在2%~5%之间,概率随着(X/Y)的比值减小而增加。另一方面,失败时超出允许GC时间的比值随着总时间片段增加而变小(分母变大了),在(100/200)、512MB的配置下,G1收集器出现了某些时间片段下100%时间在进行GC的最坏情况。而相比之下,CMS收集器的测试结果就要差很多,3种Java堆容量下都出现了100%时间进行GC的情况。
在吞吐量测试中,测试数据取3次SPECjbb和15次telco的平均结果如图3-12所示。在SPECjbb的应用下,各种配置下的G1收集器表现出了一致的行为,吞吐量看起来只与允许较大GC时间成正比关系,而在telco的应用中,不同配置对吞吐量的影响则显得很微弱。与CMS收集器的吞吐量对比可以看到,在SPECjbb测试中,在堆容量超过768MB时,CMS收集器有5%~10%的优势,而在telco测试中,CMS的优势则要小一些,只有3%~4%左右。
在更大规模的生产环境下,笔者引用一段在StackOverflow.com上看到的经验与读者分享:“我在一个真实的、较大规模的应用程序中使用过G1:大约分配有60~70GB内存,存活对象大约在20~50GB之间。服务器运行Linux操作系统,JDK版本为6u22。G1与PS/PS Old相比,较大的好处是停顿时间更加可控、可预测,如果我在PS中设置一个很低的较大允许GC时间,譬如期望50毫秒内完成GC(-XX:MaxGCPauseMillis=50),但在65GB的Java堆下有可能得到的直接结果是一次长达30秒至2分钟的漫长的Stop-The-World过程;而G1与CMS相比,虽然它们都立足于低停顿时间,CMS仍然是我现在的选择,但是随着Oracle对G1 的持续改进,我相信G1会是最终的胜利者。如果你现在采用的收集器没有出现问题,那就没有任何理由现在去选择G1,如果你的应用追求低停顿,那G1现在已经可以作为一个可尝试的选择,如果你的应用追求吞吐量,那G1并不会为你带来什么特别的好处”。
以上是关于Java虚拟机G1垃圾收集器详解的主要内容,如果未能解决你的问题,请参考以下文章