技术干货Hive实践分享之存储和压缩的坑

Posted 成都科多大数据

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了技术干货Hive实践分享之存储和压缩的坑相关的知识,希望对你有一定的参考价值。

在学习大数据技术的过程中,HIVE是非常重要的技术之一,但我们在项目上经常会遇到一些存储和压缩的坑,本文通过科多大数据的武老师整理,分享给大家。


大家都知道,由于集群资源有限,我们一般都会针对数据文件的「存储结构」「压缩形式」进行配置优化。在我实际查看以后,发现集群的文件存储格式为Parquet,一种列式存储引擎,类似的还有ORC。而文件的压缩形式为Snappy。具体的操作形式如下:


① 创建Parquet结构的表(Hive 0.13 and later):


CREATE TABLE CRM.DEMO(A INT) STORED AS PARQUET ;


② 确认表的文件存储格式:


desc formatted crm.demo;


结果输出如下


# Storage Information             


SerDe Library:          org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe      


InputFormat:                 org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat     


OutputFormat:               org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat 


③ 创建Snappy压缩格式的Parquet结构的表(待考察):


ALTER TABLE crm.demo SET TBLPROPERTIES ('parquet.compression'='SNAPPY') ;


或,写入时


SET parquet.compression=SNAPPY ;


回到最初的问题,如果是按Snappy压缩的格式,这份用户行为数据没办法分析了,因此有两种办法去解决:


① 安装Snappy的解压工具


可自行百度,由于没有权限,所以这条路行不通;


② 更改数据的压缩格式可以


最初我试了一下更改Parquet格式表的压缩格式,但是没有用!因为我最后是需要将查询数据导出到本地文件系统,如下语句所示:


insert  overwrite  local  directory  '/home/etl/tmp/data'


select *


from crm.demo


所以,通过这样的形式得到的数据,压缩格式依然是. Snappy。因此,这里就需要配置Hive执行过程中的中间数据和最终数据的压缩格式。


如MapReduce的shuffle阶段对mapper产生的中间结果数据压缩:


hive> set mapred.map.output.compression.codec;


mapred.map.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec


如对最终生成的Hive表的数据压缩:


hive> set mapred.output.compression.codec;


mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec


这里,我们要设置结果表数据的压缩格式,语句如下:


set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;


最终的结果就是 .gz 的压缩格式


-rw-r--r-- 1 etl etl 342094 May 10 11:13 000000_0.gz


最后,我们直接下载到电脑本地,直接解压就可以通过Excel分析用户行为路径数据了。



总结:从Hive应用层的角度来说,关于数据文件的「存储结构」和「压缩形式」,这两个点我们不需要关心,只是在导出数据的时候需要结合文件大小,以及数据类型去设置合适的压缩格式。不过从Hive底层维护的角度来说,涉及到各种各样的「存储结构」和「压缩形式」,都需要开发者去研究和调整,这样才能保证集群上的文件在「时间」和「空间」上相对平衡。

相关阅读






↓点击原文阅读获取更多“干货”

以上是关于技术干货Hive实践分享之存储和压缩的坑的主要内容,如果未能解决你的问题,请参考以下文章

如何走上更高平台分享传递干货知识:(开通个人微信公众号:大数据躺过的坑)(图文详解)(博主推荐)

原创干货|敏捷开发的前世今生

干货分享丨研发代码质量管理技术最佳实践

技术干货:SQL on Hadoop在快手大数据平台的实践与优化

技术干货| 阿里云基于Hudi构建Lakehouse实践探索「内附干货PPT下载渠道」

干货达观数据分析平台架构和Hive实践