Spark 中 JobStageTask 的划分+源码执行过程分析

Posted zhisheng

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark 中 JobStageTask 的划分+源码执行过程分析相关的知识,希望对你有一定的参考价值。

 系列文章

来源:https://blog.csdn.net/hjw199089/article/details/77938688

Spark 中 Job、Stage、Task 的划分+源码执行过程分析
Spark 中 Job、Stage、Task 的划分+源码执行过程分析

job、stage、task

  • Worker Node:物理节点,上面执行executor进程
  • Executor:Worker Node为某应用启动的一个进程,执行多个tasks
  • Jobs:action 的触发会生成一个job, Job会提交给DAGScheduler,分解成Stage,
  • Stage:DAGScheduler 根据shuffle将job划分为不同的stage,同一个stage中包含多个task,这些tasks有相同的 shuffle dependencies。有两类shuffle map stage和result stage:
    • shuffle map stage:case its tasks' results are input for other stage(s)
    • result stage:case its tasks directly compute a Spark action (e.g. count(), save(), etc) by running a function on an RDD,输入与结果间划分stage
  • Task:被送到executor上的工作单元,task简单的说就是在一个数据partition上的单个数据处理流程。小结:

action 触发一个 job (task 对应在一个 partition 上的数据处理流程)

------stage1(多个tasks 有相同的shuffle依赖)------【map--shuffle】------- stage2---- 【result--shuffle】-----

Spark 中 Job、Stage、Task 的划分+源码执行过程分析

【样例说明】

已下面的一段样例分析下具体的执行过程,为了分析,将map和reduce没有写成链式 data.txt数据如下,分别表示event uuid  pv

1    1001  0
1    1001  1
1    1002  0
1    1003  1
2    1002  1
2    1003  1
2    1003  0
3    1001  0
3    1001  0

计算每个事件的uv和pv,即实现,event维度下,count(distinct if(pv > 0,uuid,null)) ,sum(pv)

import org.apache.spark.{SparkConfSparkContext}
 
/**
  * Created by hjw on 17/9/11.
  *
  **/

/*
event uuid  pv data.txt的数据
1     1001 0
1     1001 1
1     1002 0
1     1003 1
2     1002 1
2     1003 1
2     1003 0
3     1001 0
3     1001 0
计算 event,count(distinct if(pv > 0,uuid,null)) ,sum(pv)
2  UV=2  PV=2
3  UV=0  PV=0
1  UV=2  PV=2
为了分析,将map和reduce没有写成链式
 */

object DAG {
 
  def main(args: Array[String]) {
    val conf = new SparkConf()
 
    conf.setAppName("test")
    conf.setMaster("local")
 
    val sc = new SparkContext(conf)
 
    val txtFile = sc.textFile(".xxxxxx/DAG/srcFile/data.txt")
    val inputRDD = txtFile.map(x => (x.split("\t")(0), x.split("\t")(1), x.split("\t")(2).toInt))
    //val partitionsSzie = inputRDD.partitions.size
 
    //这里为了分析task数先重分区,分区前partitions.size = 1,下面每个stage的task数为1
    val inputPartionRDD = inputRDD.repartition(2)
 
    //------map_shuffle stage 有shuffle Read
    //结果:(事件-用户,pv)
    val eventUser2PV = inputPartionRDD.map(x => (x._1 + "-" + x._2, x._3))
 
    //结果: (事件,(用户,pv))
    val PvRDDTemp1 = eventUser2PV.reduceByKey(_ + _).map(x =>
      (x._1.split("-")(0), (x._1.split("-")(1), x._2))
    )
 
    //-------map_shuffle stage   有shuffle Read 和 有shuffle Write
    //结果: (事件, Tuple2(Tuple2(用户,是否出现),该用户的pv) )
    val PvUvRDDTemp2 = PvRDDTemp1.map(
      x => x match {
        case x if x._2._2 > 0 => (x._1, (1, x._2._2))
        case x if x._2._2 == 0 => (x._1, (0, x._2._2))
      }
    )
 
    //结果:(事件,Tuple2(uv,pv))
    val PVUVRDD = PvUvRDDTemp2.reduceByKey(
      (a, b) => (a._1 + b._1, a._2 + b._2)
    )
 
    //------result_shuffle stage 有shuffle Read
    //--------触发一个job
    val res = PVUVRDD.collect();
 
 
    //------result_shuffle stage 有shuffle Read
    //--------触发一个job
    PVUVRDD.foreach(a => println(a._1 + "\t UV=" + a._2._1 + "\t PV=" + a._2._2))
    //    2  UV=2  PV=2
    //    3  UV=0  PV=0
    //    1  UV=2  PV=2
    while (true) {
      ;
    }
    sc.stop()
  }
}

日志中拣选出关键分析点如下:

17/09/11 22:46:19 INFO SparkContextRunning Spark version 1.6.
17/09/11 22:46:21 INFO SparkUIStarted SparkUI at http://192.168.2.100:4040
 
17/09/11 22:46:21 INFO FileInputFormatTotal input paths to process : 1
17/09/11 22:46:22 INFO SparkContextStarting job: collect at DAG.scala:69
17/09/11 22:46:22 INFO DAGSchedulerRegistering RDD 3 (repartition at DAG.scala:42)
17/09/11 22:46:22 INFO DAGSchedulerRegistering RDD 7 (map at DAG.scala:46)
17/09/11 22:46:22 INFO DAGSchedulerRegistering RDD 10 (map at DAG.scala:55)
 
17/09/11 22:46:22 INFO DAGSchedulerGot job 0 (collect at DAG.scala:69with 2 output partitions
17/09/11 22:46:22 INFO DAGSchedulerFinal stage: ResultStage 3 (collect at DAG.scala:69)
 
 
17/09/11 22:46:22 INFO DAGSchedulerSubmitting ShuffleMapStage 0 (MapPartitionsRDD[3] at repartition at DAG.scala:42), which has no missing parents
17/09/11 22:46:22 INFO DAGSchedulerShuffleMapStage 0 (repartition at DAG.scala:42) finished in 0.106 s
17/09/11 22:46:22 INFO DAGScheduler: waiting: Set(ShuffleMapStage 1ShuffleMapStage 2ResultStage 3)
 
17/09/11 22:46:22 INFO DAGSchedulerSubmitting ShuffleMapStage 1 (MapPartitionsRDD[7] at map at DAG.scala:46), which has no missing parents
17/09/11 22:46:22 INFO DAGSchedulerSubmitting 2 missing tasks from ShuffleMapStage 1 (MapPartitionsRDD[7] at map at DAG.scala:46)
17/09/11 22:46:22 INFO DAGSchedulerShuffleMapStage 1 (map at DAG.scala:46) finished in 0.055 s
 
17/09/11 22:46:22 INFO DAGScheduler: waiting: Set(ShuffleMapStage 2ResultStage 3)
17/09/11 22:46:22 INFO DAGSchedulerSubmitting ShuffleMapStage 2 (MapPartitionsRDD[10] at map at DAG.scala:55), which has no missing parents
17/09/11 22:46:22 INFO DAGSchedulerShuffleMapStage 2 (map at DAG.scala:55) finished in 0.023 s
 
17/09/11 22:46:22 INFO DAGSchedulerSubmitting ResultStage 3 (ShuffledRDD[11] at reduceByKey at DAG.scala:63), which has no missing parents
17/09/11 22:46:22 INFO DAGSchedulerResultStage 3 (collect at DAG.scala:69) finished in 0.009 s
17/09/11 22:46:22 INFO DAGSchedulerJob 0 finished: collect at DAG.scala:69, took 0.283076 s
 
 
17/09/11 22:46:22 INFO SparkContextStarting job: foreach at DAG.scala:74
17/09/11 22:46:22 INFO DAGSchedulerGot job 1 (foreach at DAG.scala:74with 2 output partitions
 
17/09/11 22:46:22 INFO DAGSchedulerFinal stage: ResultStage 7 (foreach at DAG.scala:74)
17/09/11 22:46:22 INFO DAGSchedulerParents of final stage: List(ShuffleMapStage 6)
17/09/11 22:46:22 INFO DAGSchedulerSubmitting ResultStage 7 (ShuffledRDD[11] at reduceByKey at DAG.scala:63), which has no missing parents
17/09/11 22:46:22 INFO DAGSchedulerResultStage 7 (foreach at DAG.scala:74) finished in 0.010 s
17/09/11 22:46:22 INFO DAGSchedulerJob 1 finished: foreach at DAG.scala:74, took 0.028036 s

line 69 collect() 和 line 74 行 foreach()触发两个job

val res = PVUVRDD.collect();
PVUVRDD.foreach(a => println(a._1 + "\t UV=" + a._2._1 + "\t PV=" + a._2._2))
Spark 中 Job、Stage、Task 的划分+源码执行过程分析

基于下图知

job0有4个stage,共7个task

  • stage0:1个分区有1个task执行
  • stage1--3:各有2个分区,各有2个task执行,共6个task

job1有1个stage(复用job0的RDD),有2个task

Spark 中 Job、Stage、Task 的划分+源码执行过程分析

具体job0的细节

Spark 中 Job、Stage、Task 的划分+源码执行过程分析

具体job0-stage0

1    1001  0
1    1001  1
1    1002  0
1    1003  1
2    1002  1
2    1003  1
2    1003  0
3    1001  0
3    1001  0

输入9条记录,只要一个分区,有一个task执行,想repartion进行shuffle写数据

Spark 中 Job、Stage、Task 的划分+源码执行过程分析
Spark 中 Job、Stage、Task 的划分+源码执行过程分析
Spark 中 Job、Stage、Task 的划分+源码执行过程分析
Spark 中 Job、Stage、Task 的划分+源码执行过程分析
Spark 中 Job、Stage、Task 的划分+源码执行过程分析
Spark 中 Job、Stage、Task 的划分+源码执行过程分析
Spark 中 Job、Stage、Task 的划分+源码执行过程分析

执行过程分析:

Action触发Job,如从(1)中的collect 动作val res = PVUVRDD.collect(),开始逆向分析job执行过程 
Action中利用SparkContext runJob()调用–dagScheduler.runJob(rdd,func,分区数,其他)提交Job作业
DAGScheduler的runJob中调用submitJob()并返回监听waiter,生命周期内监听Job状态
runJob()内部
val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties),监听waiter(存在原子jobId)的状态也即Job是否完成
submitJob()内部
返回值waiter是JobWaiter(JobListener)
val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)

将该获取到的Job(已有JobId),插入到LinkedBlockingDeque结构的事件处理队列中eventProcessLoop
eventProcessLoop.post(JobSubmitted(
jobId, rdd, func2, partitions.toArray, callSite, waiter,
SerializationUtils.clone(properties)))

eventProcessLoop = new DAGSchedulerEventProcessLoop(this)
class DAGSchedulerEventProcessLoop(dagScheduler: DAGScheduler)
extends EventLoop
EventLoop是LinkedBlockingDeque
eventProcessLoop(LinkedBlockingDeque类型)放入新事件后,调起底层的DAGSchedulerEventProcessLoop.onReceive(),执行doOnReceive()
doOnReceive(event: DAGSchedulerEvent)内部
根据DAGSchedulerEvent的具体类型如JobSubmitted事件或者MapStageSubmitted事件,调取具体的Submitted handle函数提交具体的Job
如 event case JobSubmitted=>dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)

private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) =>
dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)
case MapStageSubmitted(jobId, dependency, callSite, listener, properties) =>
dagScheduler.handleMapStageSubmitted(jobId, dependency, callSite, listener, properties)

handleJobSubmitted()内部
返回从ResultStage 建立stage 建立finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
finalStage激活Job val job = new ActiveJob(jobId, finalStage, callSite, listener, properties),同时开始逆向构建缺失的stage,getMissingParentStages(finalStage)(待补充看)
DAG构建完毕,提交stage,submitStage(finalStage)
submitStage中stage提交为tasks,submitMissingTasks()
submitMissingTasks,根据ShuffleMapStage还是ResultStage--new ShuffleMapTask 或 ResultTask
taskScheduler.submitTasks()开始调起具体的task

private def submitStage(stage: Stage) {
val missing = getMissingParentStages(stage).sortBy(_.id)//====在这里开始反向划分,具体划分见下方
logDebug("missing: " + missing)
if (missing.isEmpty) {
logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
submitMissingTasks(stage, jobId.get)
private def getMissingParentStages(stage: Stage): List[Stage] ={}
Spark 中 Job、Stage、Task 的划分+源码执行过程分析
Spark 中 Job、Stage、Task 的划分+源码执行过程分析

taskScheduler.submitTasks 待续。。。

从Job逆向分析TaskScheduler工作原理

DAGScheduler将stage提交task,然后stage逆向执行该stage的中rdd,这些rdds被打包成tasksets,也即每个partition为一个task,在rdd上执行对应的function函数。

细节如下:

接上部分最后一部分,DAGScheduler中的submitStage-submitMissingTasks(stage, jobId.get)如下,提交每个stage

private def submitStage(stage: Stage) {
val missing = getMissingParentStages(stage).sortBy(_.id)//====在这里开
始反向划分,具体划分见下方
submitMissingTasks()按照stage的类型,调用不同的stageStart的重载类型
  
    
    
  
Spark 中 Job、Stage、Task 的划分+源码执行过程分析




  
    
    
  


  
    
    
  
点个赞+在看,少个 bug  

以上是关于Spark 中 JobStageTask 的划分+源码执行过程分析的主要内容,如果未能解决你的问题,请参考以下文章

Spark作业调度中stage的划分

Spark(10)——Spark的Stage如何划分

第三十四课 Spark中任务处理的Stage划分和Task最佳位置算法

spark 中划分stage的思路

Spark的Job的划分

Spark的Job的划分