数据挖掘为什么要用R?
Posted 经管之家
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据挖掘为什么要用R?相关的知识,希望对你有一定的参考价值。
R,与其说是一门语言,不如说是一个软件。
从大数据的角度来看,什么样的数据最有价值,首当其冲的是运营商的数据,再者是银行数据,再者是微信数据,电商数据........而这些数据对于数据所有部门来说,大都是以地市为单位来存储的。就相当于将数据划小成为一个个的分片,这样有利于R的施展。
在做数据挖掘及可视化的时候,在国内,最好要在两周内要让客户看到你数据挖掘的价值。而要达到这样的目标,用R就会有很好的效果。特别是在数据展示方面。
2016年上半年北京唯一一次R语言数据挖掘实战现场培训,不容错过,Now or Never:
安排:上午9:00-12:00;下午1:30-4:30;答疑4:30-5:00
费用:4500元 / 3600元 (凭学生证优惠价)
本课程结合讲师的学习和工作经验,把R语言和数据挖掘的基本知识和重点难点很好的结合,注重学以致用,按照由深入浅的方式,层层推进使得学员拾阶而上的逐级掌握相关内容。
课程内容涵盖了R语言和数据挖掘的精华,从大纲来看,无论是流行的数据挖掘方法,还是前沿的算法均有所涉及,
课程中提供了大量丰富的案例,这些案例,集合了互联网、市场营销、金融保险等领域的数据挖掘实例,无疑对学习和工作有极大的参考和指导意义。
本着循序渐进而又覆盖R语言重要而有用的基本内容原则,本讲从R语言入门开始,以前期的数据处理为核心,以实际案例为载体,内容包括R语言的向量、数据框、矩阵运算、缺失值和零值的处理、特别注重用R语言构造函数编程解决实际问题,详细介绍强大的数据清洗整理plyr、zoo、car等常用包和强大的作图ggplot2包,为使用R语言进行数据挖掘打下扎实的工具基础。
案例1:如何用R语言plyr等包合并、排序、分析数据并编制香农-威纳指数;
案例2:如何用R语言编程同时实现几十个高难度数据分析可视化图片的jpeg格式输出;
案例3:如何使用R语言进行分层或者整群抽样构建训练集与测试集;
Logistic回归是商业建模的常用重要数据挖掘方法,本讲要讲清楚Logistic回归的建模原理、与多元线性模型的区别、R语言实现过程及回归诊断注意事项、预测方法和结果解释,让学员彻底地掌握Logistic回归解决问题的R语言方法。
案例1:利用Logistic回归帮助商业银行完成对客户提前还贷款情况的预测;
案例2:利用Logistic回归帮助医生对病人选择最佳治疗方案;
案例3:利用Logistic回归帮助厂家分析顾客做出购买决策的重要因素;
案例4:利用Logistic回归帮助寿险公司进行目标客户精准电话营销;
案例5:利用Logistic回归帮助商业银行完成对客户的信用评分;
案例6:利用Logistic回归帮助公司分析客户流失的原因并做好预测。
关联规则(著名的“啤酒和尿布”)是数据挖掘的基础和核心技术之一,本讲将着重围绕经典的Apriori算法和eclat算法,阐明关联规则的支持、置信和提升程度与控制,使用R语言快速完成关联规则分析。
案例1:使用R语言关联规则方法帮助各个超市实现商品的最佳捆绑销售方案(即“购物篮”分析);
决策树是数据挖掘的经典方法,其原理容易被理解。本讲主要讲授两种最为普遍的决策树算法:CART和C4.5算法,使用rpart和J48函数进行R语言分析。
案例1:对汽车耗油量进行决策树分析并完成相关目标变量的预测;
案例2:使用决策树帮助电信局判断和预测客户办理宽带业务。
第五讲:机器集成学习的Bagging和AdaBoost算法
这两种方法将许多分类器的预测结果进行汇总分析,从而达到显著提升分类效果。本讲介绍这2种算法的思想,在R语言中构造训练集和测试集进一步进行分析。
案例1:用R语言的Bagging和AdaBoost进行商业银行定期存款的分析和预测;
案例2:用R语言的Bagging和AdaBoost识别有毒蘑菇。
第六讲:R语言随机森林(RandomForest)算法
在机器学习中,随机森林是一个包含多个决策树的分类器,本讲讲清随机森林方法的原理,以致在实际中帮助学员判断适合进行随机森林分析的情况,最终熟练掌握R语言随机森林分析的方法。
本讲将分析支持向量机的结构风险最小原理、间隔和核函数,从而帮助学员深刻理解支持向量机的思想和算法,以及使用中注意的问题,从而帮助学员灵活地应用于各个领域。
神经网络由大量的节点和输出函数构成逻辑策略,本讲介绍其原理,主要通过案例的方式讲解R语言实现神经网络算法的过程和注意的事项。
对于同一个数据,可能有很多模型来拟合,如何衡量和比较模型的精度呢?本讲将介绍交叉验证训练集和测试集的方法来帮助大家在实际中选取最佳模型进行拟合和预测。
文本挖掘,特别是对中文的文本挖掘日趋重要。本讲介绍文本挖掘的原理和方法,帮助大家使用R语言在大量的非结构化的数据中发现有价值的信息,抽取潜在有用的数据,发现适合模式,实现可视化结果展示。
案例:使用R语言结合KNN算法对网页(Web)进行文本挖掘(含分词、分类、可视化等)
1、点击阅读原文中的“我要报名”,网上填写信息提交;
也可以通过QQ或者邮件报名;
4、开课前一周发送课程电子版讲义,软件准备及交通住宿指南。
以上是关于数据挖掘为什么要用R?的主要内容,如果未能解决你的问题,请参考以下文章
用C#语言将json格式数据转成json对象
R语言实战应用精讲50篇(十三)-如何使用JAVA调用R语言,两种语言的完美结合
为什么要用缓存?
工业数据分析为什么要用FusionInsight MRS IoTDB?
数据库主键为什么要用递增的序列?UUID为什么不适合做主键?
什么叫做二元关系,要用自己的理解来答!!!!