Petar Veličković是DeepMind的高级研究员,也是图注意网络的作者表示:“2020年绝对且不可逆转地,将图表示学习转变为了机器学习的‘一等公民’。”今年取得的巨大进步太多了,无法简单列举,但我个人最兴奋的,则是神经算法推理。传统上,神经网络在插值领域是非常强大的,但众所周知,它的推理能力是不充分的。推理的主要特征之一,就是能够在分布之外发挥作用。对于GNN的未来发展,推理任务很可能会占有很重要的地位,不仅因为GNN与这些任务匹配地非常好,还因为许多真实世界中的图任务具有同质性。这意味着最有效的可扩展的方法,通常会以更简洁的GNN框架形式出现。建立在先前如神经图灵器和差分神经计算机之类神经设计的成功上,又经过当前图机器学习工具的普遍应用,2020年的许多工作,探索了神经设计的理论局限性、发明了更加新颖且强大的GNN推理结构、并使神经推理任务的泛化能力得到了大幅提高。我个人最激动的是,经过预训练的算法执行者,可以让我们将经典算法应用于过于原始甚至不适合该算法的输入。例如,我们的XLVIN代理,正是使用了这些概念,即使在底层MDP的具体情况尚不清楚的情况下,也能允许GNN在强化学习中执行值迭代风格的算法。我相信,到2021年,GNN应用于强化学习的时机将成熟。”
关系结构发现(Relational structure discovery)
Thomas Kipf是谷歌Brain的研究科学家,也是Graph Convolutional Networks的作者,他表示: “自从最近基于GNN的模型被广泛采用以来,在图机器学习领域中,一个特别值得注意的趋势是计算结构与数据结构的分离。在最近的ICML研讨会上,我将这种趋势称为关系结构发现。通常,我们设计的是具有固定结构的图神经网络,而固定结构一般是由对应数据集而来,即数据集的节点和边被作为我们模型的计算结构,或者是消息传递结构的黄金标准。在2020年,我们已经看到人们对能够适应计算结构的模型越来越感兴趣,也就是说,它们使用哪些组件作为节点,在哪些节点对上执行消息传递,而不仅仅是简单的基于注意力的模型。2020年,具有影响力的例子包括使用神经关系推理,从时间序列顺序去推断因果图的摊销因果发现( Amortised Causal Discovery)、具有可学习指针和关系机制的GNN、以及在学习出的推理抽象节点上进行计算的模型。这些发展都具有广泛的意义,因为它们允许我们有效地利用GNN架构在其他领域((如文本或视频处理) 中提供的对称性(如节点排列等)和归纳偏差(如成对交互函数建模)。展望未来,我希望,我们能够看到在不依赖明确监督的情况下,如何在给定数据和任务的情况下,学习最佳的计算图结构(包括节点和关系)。对这些学习到的结构进行探索,将有助于更好地解释学习到的模型在解决任务时的计算行为,并可能使我们进一步进行类比因果推理。”