为什么大数据分析系统大都用列式存储?看了这篇文章你就知道了

Posted 过往记忆大数据

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了为什么大数据分析系统大都用列式存储?看了这篇文章你就知道了相关的知识,希望对你有一定的参考价值。

相信很多人在日常工作中接触到很多关于列式存储和行式存储系统。但是为什么很多大数据分析系统用列式存储比较多呢?本人将为大家解答这个问题。

为什么要按列存储
列式存储(Columnar or column-based)是相对于传统关系型数据库的行式存储(Row-basedstorage)来说的。 简单来说两者的区别就是如何组织表:
  • Row-based storage stores atable in a sequence of rows.

  • Column-based storage storesa table in a sequence of columns.

下面来看一个例子:

从上图可以很清楚地看到,行式存储下一张表的数据都是放在一起的,但列式存储下都被分开保存了。 所以它们就有了如下这些优缺点:
为什么大数据分析系统大都用列式存储?看了这篇文章你就知道了

注:关系型数据库理论回顾 - 选择(Selection)和投影(Projection)


为什么大数据分析系统大都用列式存储?看了这篇文章你就知道了

数据压缩

刚才其实跳过了资料里提到的另一种技术: 通过字典表压缩数据。 为了方面后面的讲解,这部分也顺带提一下了。
下面中才是那张表本来的样子。 经过字典表进行数据压缩后,表中的字符串才都变成数字了。 正因为每个字符串在字典表里只出现一次了,所以达到了压缩的目的(有点像规范化和非规范化Normalize和Denomalize)。
为什么大数据分析系统大都用列式存储?看了这篇文章你就知道了

查询执行性能

下面就是最牛的图了,通过一条查询的执行过程说明列式存储(以及数据压缩)的优点:

键步骤如下:

1. 去字典表里找到字符串对应数字(只进行一次字符串比较)。

2. 用数字去列表里匹配,匹配上的位置设为1。

3. 把不同列的匹配结果进行位运算得到符合所有条件的记录下标。

4. 使用这个下标组装出最终的结果集。

本文原文:

https://blog.csdn.net/dc_726/article/details/41143175



猜你喜欢

1、

2、

3、

4、

以上是关于为什么大数据分析系统大都用列式存储?看了这篇文章你就知道了的主要内容,如果未能解决你的问题,请参考以下文章

彻底理解大数据的列式存储

什么是5G,看了这篇文章你就彻底懂了

自从看了这篇十年大数据架构师熬夜写的HBASE集群安装!

看了这篇文章,你还敢说你了解volatile关键字吗?

Hadoop3 - MapReduce ORC 列式存储

Hadoop3 - MapReduce ORC 列式存储