数字化转型基于数字化转型大数据分析体系建设
Posted 产业智能官
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数字化转型基于数字化转型大数据分析体系建设相关的知识,希望对你有一定的参考价值。
石家庄以岭药业信息总监冯亚伟,紧扣本届会议主题,分享了《基于数字化转型大数据分析体系建设》的主题演讲。
该演讲包含三部分内容:第一,结合医药产业、国家政策、行业变化做分析,总结出业务创新难、弹性不足、数据孤岛、无法运营四个现状,引出以岭药业数字化转型的策略。第二,分享以岭药业目前的建设规划,包括基础设施、数据中心、网络安全、大数据平台、能力、经营分析、大数据分析等七大方面。第三,指标口径和关键数据的风险与对策。本文对于药企做大数据体系建设具有教强的参考性。
石家庄以岭药业信息总监 冯亚伟
以领药业坚持以科技为先导,创立了理论、临床、科研、产业教学为一体的独特运营模式,被称为我国中医药科技成果产业化的创举;以络病理论带动中医药产业化,将现代的高新技术带入企业用来研发中药、西药和生物药。目前,重要品种专利中药十余个,覆盖心脑血管、感冒呼吸系统、肿瘤、糖尿病等四大方面,包括莲花清瘟、治疗心脑血管的通络三宝等专利药品。
医药行业属于重监管的行业,所以,做数据分析需要结合国家政策和行业的变化,并认清企业面临的挑战:
国家政策方面最显著的变化,主要在三方面:第一,合规性检查、药品零加成;第二,两票制、药物一致性评价;第三,国家创新政策红利、从仿制药向创新药转型。
行业未来可能发生的变化集中在:依靠互联网对医生进行运营;政策导向,流通和制药行业面临洗牌;新药研发投入加大,技术创新会成为行业的趋势。
基于以上环境变化,企业面临的挑战凸显在以下三方面:第一是如何通过“数据驱动”的方式来运营企业客户,第二是如何构建集团统一的信息化平台以支撑业务,第三是需要通过新技术来提升新药研发效率。
回顾企业自身,以岭药业的信息化有四个特点:
业务创新难:一个新的业务系统开发,从头开始建设,开发周期长,迭代慢。
弹性不足:用系统支撑的用户数量相对确定,直播、内容服务等新业务场景,现有系统难以支撑。
运营欠缺:每次活动都能产生大量的数据,这些数据怎么收集,已经有的几十万医生数据如何使用,大量数据散落于各业务系统中,没有沉淀。
数据库的“信息孤岛”问题:客户、原材料供应商、人员等,客户、原材料、供应商、人员信息等等都冗余在几十套系统中,还有大量的数据孤立于各套系统中。
针对以上问题,以岭药业提出了数字化转型策略,主要方向是:将传统垂直封闭的IT架构转变为平台化服务化的开放架构;从关注“流程”向关注“用户体验”转变(实现端到端的用户需求);从“内部工具IT系统”走向“与用户连接的实时智能系统”。
数据经营的最终目的,是降低整体成本,即降低时间成本、管理成本和风险成本,进而提高业务协作水平、监督管理能力和预测能力,同时也希望降低累计成本,即降低能耗、运维和建设成本,建设绿色信息化,云化IT、自动化IT。
以岭药业近两年的重点目标,是降低成本和提升收入:降低成本方面,主要以建设自动化IT来降低运维成本;在提升收入方面,从生产营销以及厂区的智能化建设,来推动生产市场的扩大和品牌知名度的建设,提升累计收入;而整体收入的提升,则通过智能化的运营模式和大数据的收集、分析来实现。
根据以上重要目标,来展开具体的建设。上图是以岭药业大数据经营分析的建设规划图:
依靠私有云和公有云的结合,在上面部署相关应用,推动整体的建设。
“能力建设”分为五个板块:数据采集能力(包括外部数据、内部数据以及互联网数据)、数据治理能力(重点是主数据的治理和数据标准化的工作)、数据处理能力、数据分析能力(针对现有数据进行相关的经营分析)、数据应用能力。
以岭药业在做主数据梳理的过程中,有一些针对性的建设规划:首先,梳理不同层面(战略层/策略层/运营层)、不同板块(采购/生产/营销/大健康)的指标;第二,规范指标模型,各指标的数据来源、计算方式、计算频率在公司层面达成共识;第三,希望能建立统一的指标库,依据公司指标体系和指标模型建立统一的指标库;第四,为经营决策分析提供支持为各级管理者提供驾驶舱及固定报表。
在大数据分析的价值方面,以岭药业想要实现两个目标:数据驱动业务创新、业务模型成为核心竞争力之一。具体实现方式有三种:购买服务,因为大数据对人才的要求非常严格,很多东西需要购买服务,比如医生画像、中药材价格趋势预测、销售预测;因为企业自身的特点不同,因此,也需要相应的外包定制开发;需要培养自己的研发力量。实施的目标分级是:逐步构建数据模型,以可视化方式支持业务决策。计划应用领域包括:商业大数据、工业大数据和智慧运营。以岭药业计划在六五期间,在营销、大健康、智慧运营领域挖掘大数据应用点,19年完成医生舆情分析、中药材价格趋势预测。
以岭药业在数据建设过程中的第一个主要风险,来自于指标口径,缺乏一套集团与各板块充分明确和广泛认同的指标定义;项目组根据现有资料和调研状况,对指标进行了初步定义,仍需要讨论与确认。
针对这个风险,实施了两点对策:在实施阶段由集团项目组牵头,集团与各板块业务部门需明确定义每个指标的口径和计算公式,形成指标字典;在实施阶段明确指标的管理流程和制度,有序的应对指标变化和生命周期管理。
遇到的第二个主要风险,来自于关键数据,对分析涉及的关键数据(客户、客户分类、物料、物料分类),缺乏集团层面统一辨识和管理;目前还不具备利用MDM来管理集团和子公司的关键主数据。
对此风险的对策有两点:在实施阶段,由集团项目组和相关业务部门梳理BI涉及的关键数据;利用BI建立主数据对应表,并在数据加载过程中完成不同系统的主数据映射。
先进制造业+工业互联网
产业智能官 AI-CPS
加入知识星球“产业智能研究院”:先进制造业OT(自动化+机器人+工艺+精益)和工业互联网IT(云计算+大数据+物联网+区块链+人工智能)产业智能化技术深度融合,在场景中构建“状态感知-实时分析-自主决策-精准执行-学习提升”的产业智能化平台;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链。
版权声明:产业智能官(ID:AI-CPS)推荐的文章,除非确实无法确认,我们都会注明作者和来源,涉权烦请联系协商解决,联系、投稿邮箱:erp_vip@hotmail.com。
以上是关于数字化转型基于数字化转型大数据分析体系建设的主要内容,如果未能解决你的问题,请参考以下文章