Pandas不容错过的Pandas小技巧:万能转格式轻松合并压缩数据,让数据分析更高效

Posted 机器学习算法与自然语言处理

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Pandas不容错过的Pandas小技巧:万能转格式轻松合并压缩数据,让数据分析更高效相关的知识,希望对你有一定的参考价值。

公众号关注 “ ML_NLP
设为 “ 星标 ”,重磅干货,第一时间送达!

作者:Roman Orac
鱼羊 编译整理
量子位 报道 | 公众号 QbitAI

数据分析,如何能错过 Pandas 。

现在,数据科学家 Roman Orac 分享了他在工作中相见恨晚的 Pandas 使用技巧。

了解了这些技巧,能让你在学习、使用 Pandas 的时候更加高效。

【Pandas】不容错过的Pandas小技巧:万能转格式、轻松合并、压缩数据,让数据分析更高效

话不多说,一起学习一下~

Pandas实用技巧

用 Pandas 做数据分析,最大的亮点当属 DataFrame。不过,在展示成果的时候,常常需要把 DataFrame 转成另一种格式。

Pandas 在这一点上其实十分友好,只需添加一行代码。

DataFrame 转 HTML

如果你需要用 html 发送自动报告,那么 to_html 函数了解一下。

比如,我们先设定这样一个 DataFrame:


import numpy as np
import pandas as pd
import random

n = 10
df = pd.DataFrame(
    {
        "col1": np.random.random_sample(n),
        "col2": np.random.random_sample(n),
        "col3": [[random.randint(010for _ in range(random.randint(35))] for _ in range(n)],
    }
)


用上 to_html,就可以将表格转入 html 文件:


df_html = df.to_html()
with open(‘analysis.html’, ‘w’) as f: f.write(df_html)


【Pandas】不容错过的Pandas小技巧:万能转格式、轻松合并、压缩数据,让数据分析更高效

与之配套的,是 read_html 函数,可以将 HTML 转回 DataFrame。

DataFrame 转 LaTeX

如果你还没用过 LaTeX 写论文,强烈建议尝试一下。

要把 DataFrame 值转成 LaTeX 表格,也是一个函数就搞定了:


df.to_latex()


【Pandas】不容错过的Pandas小技巧:万能转格式、轻松合并、压缩数据,让数据分析更高效

DataFrame 转 Markdown

如果你想把代码放到 GitHub 上,需要写个 README。

这时候,你可能需要把 DataFrame 转成 Markdown 格式。

Pandas 同样为你考虑到了这一点:


print(df.to_markdown())


【Pandas】不容错过的Pandas小技巧:万能转格式、轻松合并、压缩数据,让数据分析更高效

注:这里还需要 tabulate 库

DataFrame 转 Excel

说到这里,给同学们提一个小问题:导师/老板/客户要你提供 Excel 格式的数据,你该怎么做?

当然是——


df.to_excel(‘analysis.xlsx’)


需要注意的是,如果你没有安装过 xlwt 和 openpyxl 这两个工具包,需要先安装一下。

另外,跟 HTML 一样,这里也有一个配套函数:read_excel,用来将excel数据导入pandas DataFrame。

DataFrame 转字符串

转成字符串,当然也没问题:


df.to_string()


5个鲜为人知的Pandas技巧

此前,Roman Orac 还曾分享过 5 个他觉得十分好用,但大家可能没有那么熟悉的 Pandas 技巧。

1、data_range

从外部 API 或数据库获取数据时,需要多次指定时间范围。

Pandas 的 data_range 覆盖了这一需求。


import pandas as pd
date_from = “2019-01-01
date_to = “2019-01-12
date_range = pd.date_range(date_from, date_to, freq=”D”)
print(date_range)


freq = “D”/“M”/“Y”,该函数就会分别返回按天、月、年递增的日期。

【Pandas】不容错过的Pandas小技巧:万能转格式、轻松合并、压缩数据,让数据分析更高效

2、合并数据

当你有一个名为left的DataFrame:

【Pandas】不容错过的Pandas小技巧:万能转格式、轻松合并、压缩数据,让数据分析更高效

和名为right的DataFrame:

【Pandas】不容错过的Pandas小技巧:万能转格式、轻松合并、压缩数据,让数据分析更高效

想通过关键字“key”把它们整合到一起:

【Pandas】不容错过的Pandas小技巧:万能转格式、轻松合并、压缩数据,让数据分析更高效

实现的代码是:


df_merge = left.merge(right, on = ‘key’, how = ‘left’, indicator = True)


3、最近合并(Nearest merge)

在处理股票或者加密货币这样的财务数据时,价格会随着实际交易变化。

针对这样的数据,Pandas提供了一个好用的功能,merge_asof。

该功能可以通过最近的key(比如时间戳)合并DataFrame。

举个例子,你有一个存储报价信息的DataFrame。

【Pandas】不容错过的Pandas小技巧:万能转格式、轻松合并、压缩数据,让数据分析更高效

还有一个存储交易信息的DataFrame。

【Pandas】不容错过的Pandas小技巧:万能转格式、轻松合并、压缩数据,让数据分析更高效

现在,你需要把两个DataFrame中对应的信息合并起来。

最新报价和交易之间可能有10毫秒的延迟,或者没有报价,在进行合并时,就可以用上 merge_asof。


pd.merge_asof(trades, quotes, on=”timestamp”, by=’ticker’, tolerance=pd.Timedelta(‘10ms’), direction=‘backward’)


【Pandas】不容错过的Pandas小技巧:万能转格式、轻松合并、压缩数据,让数据分析更高效

4、创建Excel报告

在Pandas中,可以直接用DataFrame创建Excel报告。


import numpy as np
import pandas as pd

df = pd.DataFrame(np.array([[123], [456], [789]]), columns=["a""b""c"])

report_name = 'example_report.xlsx'
sheet_name = 'Sheet1'
writer = pd.ExcelWriter(report_name, engine='xlsxwriter')
df.to_excel(writer, sheet_name=sheet_name, index=False)


不只是数据,还可以添加图表。


# define the workbook
workbook = writer.book
worksheet = writer.sheets[sheet_name]
# create a chart line object
chart = workbook.add_chart({'type''line'})
# configure the series of the chart from the spreadsheet
# using a list of values instead of category/value formulas:
#     [sheetname, first_row, first_col, last_row, last_col]
chart.add_series({
    'categories': [sheet_name, 1030],
    'values':     [sheet_name, 1131],
})
# configure the chart axes
chart.set_x_axis({'name''Index''position_axis''on_tick'})
chart.set_y_axis({'name''Value''major_gridlines': {'visible'False}})
# place the chart on the worksheet
worksheet.insert_chart('E2', chart)
# output the excel file
writer.save()


注:这里需要 XlsxWriter 库

【Pandas】不容错过的Pandas小技巧:万能转格式、轻松合并、压缩数据,让数据分析更高效

5、节省磁盘空间

Pandas在保存数据集时,可以对其进行压缩,其后以压缩格式进行读取。

先搞一个 300MB 的 DataFrame,把它存成 csv。


df = pd.DataFrame(pd.np.random.randn(50000,300))
df.to_csv(‘random_data.csv’, index=False)


压缩一下试试:


df.to_csv(‘random_data.gz’, compression=’gzip’, index=False)


文件就变成了136MB。

【Pandas】不容错过的Pandas小技巧:万能转格式、轻松合并、压缩数据,让数据分析更高效

gzip压缩文件可以直接读取:


df = pd.read_csv(‘random_data.gz’)


这一份Pandas技巧笔记,暂且说到这里。各位同学都做好笔记了吗?

Talk is cheap, show me the code。学会了,就用起来吧


作者系网易新闻·网易号“各有态度”签约作者


重磅!忆臻自然语言处理-学术微信交流群已成立

可以扫描下方二维码,小助手将会邀请您入群交流,

注意:请大家添加时修改备注为 [学校/公司 + 姓名 + 方向]

例如 —— 哈工大+张三+对话系统。

号主,微商请自觉绕道。谢谢!

【Pandas】不容错过的Pandas小技巧:万能转格式、轻松合并、压缩数据,让数据分析更高效


推荐阅读:



以上是关于Pandas不容错过的Pandas小技巧:万能转格式轻松合并压缩数据,让数据分析更高效的主要内容,如果未能解决你的问题,请参考以下文章

让数据分析更简单的Panda技巧:万能转格式轻松合并数据压缩...

不容忽视的30个数据可视化小技巧

pandas小技巧

不容错过的mac视频修剪技巧:Mac版Joyoshare Media Cutter入门指南

pandas处理数据小技巧

不容错过的 13 个 JavaScript 实用技巧!