C#编译器优化那点事

Posted 猿学圈

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了C#编译器优化那点事相关的知识,希望对你有一定的参考价值。

来源:https://www.cnblogs.com/podolski/p/8987595.html

使用C#编写程序,给最终用户的程序,是需要使用release配置的,而release配置和debug配置,有一个关键区别,就是release的编译器优化默认是启用的。
优化代码开关即optimize开关,和debug开关一起,有以下几种组合。

在Visual Sutdio中新建一个C#项目时,
项目的“调试”(Debug)配置的是/optimize-和/debug:full开关,
而“发布”(Release)配置指定的是/optimize+和/debug:pdbonly开关

optimize-/+决定了编译器是否优化代码,optimize-就是不优化了,但是通常,有一些基本的“优化”工作,无论是否指定optimize+,都会执行。

optimize- and optimize+

该项功能主要用于动态语义分析,帮助我们更好地编写代码。

  • 常量计算

    在写程序的时候,有时能看见代码下面划了一道红波浪线,那就是编译器动态检查。常量计算,就是这样,编译器会计算常量,帮助判断其他错误。
    C#编译器优化那点事

  • 简单分支检查

    如果swtich写了两个以上的相同条件,或者分支明显无法访问到,都会弹出提示。
    C#编译器优化那点事

  • 未使用变量

    不多说明,直接看图。
    C#编译器优化那点事

  • 使用未赋值变量

    不多说,看图。
    C#编译器优化那点事

局限

使用变量参与计算,随便写一个算式,就可以绕过一些检查,虽然我们看来是明显有问题的。
C#编译器优化那点事

optimize+ only

首先需要了解c#代码编译的过程,如下图:
C#编译器优化那点事
图片来自http://www.cnblogs.com/rush/p/3155665.html

C# compiler将C#代码生成IL代码的就是所谓的编译器优化。先说重点。
.NET的JIT机制,主要优化在JIT中完成,编译器optimize只做一点简单的工作。(划重点)

探究一下到底干了点啥吧,以下是使用到的工具。

Tools:
Visual studio 2017 community targeting .net core 2.0
IL DASM(vs自带)

使用IL DASM可以查看编译器生成的IL代码,这样就能看到优化的作用了。IL代码的用途与机制不是本文的重点,不明白的同学可以先去看看《C# via CLR》(好书推荐)。

按照优化的类型进行了简单的分类。

  • 从未使用变量

    代码如下:

using System;using System.Threading.Tasks;namespace CompileOpt{    class Program
    {        static void Main(string[] args)        {            int x = 3;
            Console.WriteLine("sg");
        }
    }
}

未优化的时候

.method private hidebysig static void  Main(string[] args) cil managed{
  .entrypoint  // 代码大小       15 (0xf)
  .maxstack  1
  .locals init (int32 V_0)  IL_0000:  nop  IL_0001:  ldc.i4.3  IL_0002:  stloc.0  IL_0003:  ldstr      "sg"  IL_0008:  call       void [System.Console]System.Console::WriteLine(string)  IL_000d:  nop  IL_000e:  ret
} // end of method Program::Main

使用优化开关优化之后:

.method private hidebysig static void  Main(string[] args) cil managed{
  .entrypoint  // 代码大小       11 (0xb)
  .maxstack  8
  IL_0000:  ldstr      "sg"
  IL_0005:  call       void [System.Console]System.Console::WriteLine(string)
  IL_000a:  ret
} // end of method Program::Main

.locals init (int32 V_0)消失了(局部变量,类型为int32)
ldc.i4.3(将3推送到堆栈上)和stloc.0(将值从堆栈弹出到局部变量 0)也消失了。
所以,整个没有使用的变量,在设置为优化的时候,就直接消失了,就像从来没有写过一样。

  • 空try catch语句

    代码如下:

using System;using System.Threading.Tasks;namespace CompileOpt{    class Program
    {        static void Main(string[] args)        {            try
            {

            }            catch (Exception)
            {
                Console.WriteLine(DateTime.Now);
            }            try
            {

            }            catch (Exception)
            {
                Console.WriteLine(DateTime.Now);

            }            finally
            {
                Console.WriteLine(DateTime.Now);

            }
        }
    }
}

未优化

.method private hidebysig static void  Main(string[] args) cil managed{
  .entrypoint  // 代码大小       74 (0x4a)
  .maxstack  1  IL_0000:  nop
  .try
  {    IL_0001:  nop    IL_0002:  nop    IL_0003:  leave.s    IL_001a
  }  // end .try
  catch [System.Runtime]System.Exception 
  {    IL_0005:  pop    IL_0006:  nop    IL_0007:  call       valuetype [System.Runtime]System.DateTime [System.Runtime]System.DateTime::get_Now()    IL_000c:  box        [System.Runtime]System.DateTime    IL_0011:  call       void [System.Console]System.Console::WriteLine(object)    IL_0016:  nop    IL_0017:  nop    IL_0018:  leave.s    IL_001a
  }  // end handler  IL_001a:  nop
  .try
  {
    .try
    {      IL_001b:  nop      IL_001c:  nop      IL_001d:  leave.s    IL_0034
    }  // end .try
    catch [System.Runtime]System.Exception 
    {      IL_001f:  pop      IL_0020:  nop      IL_0021:  call       valuetype [System.Runtime]System.DateTime [System.Runtime]System.DateTime::get_Now()      IL_0026:  box        [System.Runtime]System.DateTime      IL_002b:  call       void [System.Console]System.Console::WriteLine(object)      IL_0030:  nop      IL_0031:  nop      IL_0032:  leave.s    IL_0034
    }  // end handler    IL_0034:  leave.s    IL_0049
  }  // end .try
  finally
  {    IL_0036:  nop    IL_0037:  call       valuetype [System.Runtime]System.DateTime [System.Runtime]System.DateTime::get_Now()    IL_003c:  box        [System.Runtime]System.DateTime    IL_0041:  call       void [System.Console]System.Console::WriteLine(object)    IL_0046:  nop    IL_0047:  nop    IL_0048:  endfinally
  }  // end handler  IL_0049:  ret
} // end of method Program::Main

优化开关开启:

.method private hidebysig static void  Main(string[] args) cil managed{
  .entrypoint  // 代码大小       19 (0x13)
  .maxstack  1
  .try
  {
    IL_0000:  leave.s    IL_0012
  }  // end .try
  finally
  {
    IL_0002:  call       valuetype [System.Runtime]System.DateTime [System.Runtime]System.DateTime::get_Now()
    IL_0007:  box        [System.Runtime]System.DateTime
    IL_000c:  call       void [System.Console]System.Console::WriteLine(object)
    IL_0011:  endfinally
  }  // end handler
  IL_0012:  ret
} // end of method Program::Main

很明显可以看到,空的try catch直接消失了,但是空的try catch finally代码是不会消失的,但是也不会直接调用finally内的代码(即还是会生成try代码段)。

  • 分支简化

    代码如下:

using System;using System.Threading.Tasks;namespace CompileOpt{    class Program
    {        static void Main(string[] args)        {            int x = 3;            if (x == 3)                goto LABEL1;            else
                goto LABEL2;
            LABEL2: return;
            LABEL1: return;
        }
    }
}

未优化的情况下:

.method private hidebysig static void  Main(string[] args) cil managed{
  .entrypoint  // 代码大小       22 (0x16)
  .maxstack  2
  .locals init (int32 V_0,
           bool V_1)  IL_0000:  nop  IL_0001:  ldc.i4.3  IL_0002:  stloc.0  IL_0003:  ldloc.0  IL_0004:  ldc.i4.3  IL_0005:  ceq  IL_0007:  stloc.1  IL_0008:  ldloc.1  IL_0009:  brfalse.s  IL_000d  IL_000b:  br.s       IL_0012  IL_000d:  br.s       IL_000f  IL_000f:  nop  IL_0010:  br.s       IL_0015  IL_0012:  nop  IL_0013:  br.s       IL_0015  IL_0015:  ret
} // end of method Program::Main

优化:

.method private hidebysig static void  Main(string[] args) cil managed{
  .entrypoint  // 代码大小       5 (0x5)
  .maxstack  8  IL_0000:  ldc.i4.3  IL_0001:  ldc.i4.3  IL_0002:  pop  IL_0003:  pop  IL_0004:  ret
} // end of method Program::Main

优化的情况下,一些分支会被简化,使得调用更加简洁。

  • 跳转简化

    代码如下:

using System;using System.Threading.Tasks;namespace CompileOpt{    class Program
    {        static void Main(string[] args)        {            goto LABEL1;
            LABEL2: Console.WriteLine("234");
            Console.WriteLine("123");            return;
            LABEL1: goto LABEL2;
        }     
    }
}

未优化:

.method private hidebysig static void  Main(string[] args) cil managed{
  .entrypoint  // 代码大小       32 (0x20)
  .maxstack  8  IL_0000:  nop  IL_0001:  br.s       IL_001c  IL_0003:  nop  IL_0004:  ldstr      "234"  IL_0009:  call       void [System.Console]System.Console::WriteLine(string)  IL_000e:  nop  IL_000f:  ldstr      "123"  IL_0014:  call       void [System.Console]System.Console::WriteLine(string)  IL_0019:  nop  IL_001a:  br.s       IL_001f  IL_001c:  nop  IL_001d:  br.s       IL_0003  IL_001f:  ret
} // end of method Program::Main

优化后:

.method private hidebysig static void  Main(string[] args) cil managed{
  .entrypoint  // 代码大小       21 (0x15)
  .maxstack  8
  IL_0000:  ldstr      "234"
  IL_0005:  call       void [System.Console]System.Console::WriteLine(string)
  IL_000a:  ldstr      "123"
  IL_000f:  call       void [System.Console]System.Console::WriteLine(string)
  IL_0014:  ret
} // end of method Program::Main

一些多层的标签跳转会得到简化,优化器就是人狠话不多。

  • 临时变量消除

    一些临时变量(中间变量)会被简化消除。代码如下:

using System;using System.Threading.Tasks;namespace CompileOpt{    class Program
    {        static void Main(string[] args)        {            for (int i = 0; i < 3; i++)
            {
                Console.WriteLine(i);
            }            for (int i = 0; i < 3; i++)
            {
                Console.WriteLine(i + 1);
            }
        }
    }
}

只显示最关键的变量声明部分,未优化的代码如下:

.method private hidebysig static void  Main(string[] args) cil managed{
  .entrypoint  // 代码大小       54 (0x36)
  .maxstack  2
  .locals init (int32 V_0,           bool V_1,
           int32 V_2,           bool V_3)
  IL_0000:  nop

优化后:

.method private hidebysig static void  Main(string[] args) cil managed{
  .entrypoint  // 代码大小       39 (0x27)
  .maxstack  2
  .locals init (int32 V_0,
           int32 V_1)
  IL_0000:  ldc.i4.0

很显然,中间的bool型比较变量消失了。

  • 空指令删除

    看第一个例子,很明显,代码中没有了nop字段,程序更加紧凑了。

编译器版本不同,对应的优化手段也不尽相同,以上只列出了一些,应该还有一些没有讲到的,欢迎补充。

延伸阅读:.NET中的优化(转载自http://blog.jobbole.com/84712/)

在.NET的编译模型中没有链接器。但是有一个源代码编译器(C# compiler)和即时编译器(JIT compiler),源代码编译器只进行很小的一部分优化。比如它不会执行函数内联和循环优化。

从优化能力上来讲RyuJIT和Visual C++有什么不同呢?因为RyuJIT是在运行时完成其工作的,所以它可以完成一些Visual C++不能完成的工作。比如在运行时,RyuJIT可能会判定,在这次程序的运行中一个if语句的条件永远不会为true,所以就可以将它移除。RyuJIT也可以利用他所运行的处理器的能力。比如如果处理器支持SSE4.1,即时编译器就会只写出sumOfCubes函数的SSE4.1指令,让生成打的代码更加紧凑。但是它不能花更多的时间来优化代码,因为即时编译所花的时间会影响到程序的性能。

在当前控制托管代码的能力是很有限的。C#和VB编译器只允许使用/optimize编译器开关打开或者关闭优化功能。为了控制即时编译优化,你可以在方法上使用System.Runtime.Compiler­Services.MethodImpl属性和MethodImplOptions中指定的选项。NoOptimization选项可以关闭优化,NoInlining阻止方法被内联,AggressiveInlining (.NET 4.5)选项推荐(不仅仅是提示)即时编译器将一个方法内联。



-END-





看完本文的你是否有所收获?

请转发给更多人关注

【猿学圈】

提升IT技能~

长按关注,谢谢转发

学海无涯,别担心,有我陪着你~


点个赞,让我在心里记住你 ☟ 

以上是关于C#编译器优化那点事的主要内容,如果未能解决你的问题,请参考以下文章

Python那点事

重载delete时的那点事

有关索引那点事

分布式锁那点事

学习笔记之Linux发行版那点事

代码提交那点事