目标跟踪检测算法(四)——多目标扩展
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了目标跟踪检测算法(四)——多目标扩展相关的知识,希望对你有一定的参考价值。
参考技术A 姓名:刘帆;学号:20021210609;学院:电子工程学院https://blog.csdn.net/qq_34919792/article/details/89893665
【嵌牛导读】基于深度学习的算法在图像和视频识别任务中取得了广泛的应用和突破性的进展。从图像分类问题到行人重识别问题,深度学习方法相比传统方法表现出极大的优势。与行人重识别问题紧密相关的是行人的多目标跟踪问题。
【嵌牛鼻子】深度多目标跟踪算法
【嵌牛提问】深度多目标跟踪算法有哪些?
【嵌牛正文】
第一阶段(概率统计最大化的追踪)
1)多假设多目标追踪算法(MHT,基于kalman在多目标上的拓展)
多假设跟踪算法(MHT)是非常经典的多目标跟踪算法,由Reid在对雷达信号的自动跟踪研究中提出,本质上是基于Kalman滤波跟踪算法在多目标跟踪问题中的扩展。
卡尔曼滤波实际上是一种贝叶斯推理的应用,通过历史关联的预测量和k时刻的预测量来计算后验概率:
关联假设的后验分布是历史累计概率密度的连乘,转化为对数形式,可以看出总体后验概率的对数是每一步观察似然和关联假设似然的求和。但是若同时出现多个轨迹的时候,则需要考虑可能存在的多个假设关联。
左图为k-3时刻三个检测观察和两条轨迹的可能匹配。对于这种匹配关系,可以继续向前预测两帧,如图右。得到一种三层的假设树结构,对于假设树根枝干的剪枝,得到k-3时刻的最终关联结果。随着可能性增加,假设组合会爆炸性增多,为此,只为了保留最大关联性,我们需要对其他的节点进行裁剪。下式为选择方程
实际上MHT不会单独使用,一般作为单目标追踪的扩展添加。
2)基于检测可信度的粒子滤波算法
这个算法分为两个步骤:
1、对每一帧的检测结果,利用贪心匹配算法与已有的对象轨迹进行关联。
其中tr表示一个轨迹,d是某一个检测,他们的匹配亲和度计算包含三个部分:在线更新的分类学习模型(d),用来判断检测结果是不是属于轨迹tr; 轨迹的每个粒子与检测的匹配度,采用中心距离的高斯密度函数求和(d-p)表示;与检测尺寸大小相关的阈值函数g(tr,d),表示检测与轨迹尺度的符合程度, 而α是预设的一个超参数。
计算出匹配亲和度矩阵之后,可以采用二部图匹配的Hungarian算法计算匹配结果。不过作者采用了近似的贪心匹配算法,即首先找到亲和度最大的那个匹配,然后删除这个亲和度,寻找下一个匹配,依次类推。贪心匹配算法复杂度是线性,大部分情况下,也能得到最优匹配结果。
2、利用关联结果,计算每个对象的粒子群权重,作为粒子滤波框架中的观察似然概率。
其中tr表示需要跟踪的对象轨迹,p是某个粒子。指示函数I(tr)表示第一步关联中,轨迹tr是不是关联到某个检测结果,当存在关联时,计算与关联的检测d 的高斯密度Pn(p-d );Ctr§是对这个粒子的分类概率;§是粒子通过检测算法得到的检测可信度,(tr)是一个加权函数,计算如下:
3)基于马尔科夫决策的多目标跟踪算法
作者把目标跟踪看作为状态转移的过程,转移的过程用马尔科夫决策过程(MDP)建模。一个马尔科夫决策过程包括下面四个元素:(S, A, T(.),R(.))。其中S表示状态集合,A表示动作集合,T表示状态转移集合,R表示奖励函数集合。一个决策是指根据状态s确定动作a, 即 π: SA。一个对象的跟踪过程包括如下决策过程:
从Active状态转移到Tracked或者Inactive状态:即判断新出现的对象是否是真。
从Tracked状态转移到Tracked或者Lost状态:即判断对象是否是持续跟踪或者暂时处于丢失状态。
从Lost状态转移到Lost或者Tracked或者Inactive状态:即判断丢失对象是否重新被跟踪,被终止,或者继续处于丢失状态。
作者设计了三个奖励函数来描述上述决策过程:
第一个是:
即判断新出现的对象是否为真,y(a)=1时表示转移到跟踪状态,反之转移到终止状态。这是一个二分类问题,采用2类SVM模型学习得到。这里用了5维特征向量:包括x-y坐标、宽、高和检测的分数。
第二个是:
这个函数用来判断跟踪对象下一时刻状态是否是出于继续跟踪,还是处于丢失,即跟踪失败。这里作者用了5个历史模板,每个模板和当前图像块做光流匹配,emedFB表示光流中心偏差, 表示平均重合率。 和 是阈值。
第三个是:
这个函数用来判断丢失对象是否重新跟踪,或者终止,或者保持丢失状态不变。这里当丢失状态连续保持超过 (=50)时,则转向终止,其他情况下通过计算M个检测匹配,来判断是否存在最优的匹配使上式(3-14)奖励最大,并大于0。这里涉及两个问题如何设计特征以及如何学习参数。这里作者构造了12维与模板匹配相关的统计值。而参数的学习采用强化学习过程,主要思想是在犯错时候更新二类分类器值。
第二阶段 深度学习应用
1)基于对称网络的多目标跟踪算法
关于Siamese网络在单目标跟踪深度学习中有了介绍,在这里不再介绍,可以向前参考。
2)基于最小多割图模型的多目标跟踪算法
上述算法中为了匹配两个检测采用LUV图像格式以及光流图像。Tang等人在文献中发现采用深度学习计算的类光流特征(DeepMatching),结合表示能力更强的模型也可以得到效果很好的多目标跟踪结果。
基于DeepMatching特征,可以构造下列5维特征:
其中MI,MU表示检测矩形框中匹配的点的交集大小以及并集大小,ξv和ξw表示检测信任度。利用这5维特征可以学习一个逻辑回归分类器。
同样,为了计算边的匹配代价,需要设计匹配特征。这里,作者采用结合姿态对齐的叠加Siamese网络计算匹配相似度,如图9,采用的网络模型StackNetPose具有最好的重识别性能。
综合StackNetPose网络匹配信任度、深度光流特征(deepMatching)和时空相关度,作者设计了新的匹配特征向量。类似于[2], 计算逻辑回归匹配概率。最终的跟踪结果取得了非常突出的进步。在MOT2016测试数据上的结果如下表:
3)通过时空域关注模型学习多目标跟踪算法
除了采用解决目标重识别问题的深度网络架构学习检测匹配特征,还可以根据多目标跟踪场景的特点,设计合适的深度网络模型来学习检测匹配特征。Chu等人对行人多目标跟踪问题中跟踪算法发生漂移进行统计分析,发现不同行人发生交互时,互相遮挡是跟踪算法产生漂移的重要原因[4]。如图10。
在这里插入图片描述
针对这个问题,文献[4]提出了基于空间时间关注模型(STAM)用于学习遮挡情况,并判别可能出现的干扰目标。如图11,空间关注模型用于生成遮挡发生时的特征权重,当候选检测特征加权之后,通过分类器进行选择得到估计的目标跟踪结果,时间关注模型加权历史样本和当前样本,从而得到加权的损失函数,用于在线更新目标模型。
该过程分三步,第一步是学习特征可见图:
第二步是根据特征可见图,计算空间关注图(Spatial Attention):
其中fatt是一个局部连接的卷积和打分操作。wtji是学习到的参数。
第三步根据空间注意图加权原特征图:
对生成的加权特征图进行卷积和全连接网络操作,生成二元分类器判别是否是目标自身。最后用得到分类打分选择最优的跟踪结果。
4)基于循环网络判别融合表观运动交互的多目标跟踪算法
上面介绍的算法采用的深度网络模型都是基于卷积网络结构,由于目标跟踪是通过历史轨迹信息来判断新的目标状态,因此,设计能够记忆历史信息并根据历史信息来学习匹配相似性度量的网络结构来增强多目标跟踪的性能也是比较可行的算法框架。
考虑从三个方面特征计算轨迹历史信息与检测的匹配:表观特征,运动特征,以及交互模式特征。这三个方面的特征融合以分层方式计算。
在底层的特征匹配计算中,三个特征都采用了长短期记忆模型(LSTM)。对于表观特征,首先采用VGG-16卷积网络生成500维的特征ϕtA,以这个特征作为LSTM的输入计算循环。
对于运动特征,取相对位移vit为基本输入特征,直接输入LSTM模型计算没时刻的输出ϕi,对于下一时刻的检测同样计算相对位移vjt+1,通过全连接网络计算特征ϕj,类似于表观特征计算500维特征ϕm,并利用二元匹配分类器进行网络的预训练。
对于交互特征,取以目标中心位置周围矩形领域内其他目标所占的相对位置映射图作为LSTM模型的输入特征,计算输出特征ϕi,对于t+1时刻的检测计算类似的相对位置映射图为特征,通过全连接网络计算特征ϕj,类似于运动模型,通过全连接网络计算500维特征ϕI,进行同样的分类训练。
当三个特征ϕA,ϕM,ϕI都计算之后拼接为完整的特征,输入到上层的LSTM网络,对输出的向量进行全连接计算,然后用于匹配分类,匹配正确为1,否则为0。对于最后的网络结构,还需要进行微调,以优化整体网络性能。最后的分类打分看作为相似度用于检测与轨迹目标的匹配计算。最终的跟踪框架采用在线的检测与轨迹匹配方法进行计算。
5)基于双线性长短期循环网络模型的多目标跟踪算法
在对LSTM中各个门函数的设计进行分析之后,Kim等人认为仅仅用基本的LSTM模型对于表观特征并不是最佳的方案,在文献[10]中,Kim等人设计了基于双线性LSTM的表观特征学习网络模型。
除了利用传统的LSTM进行匹配学习,或者类似[5]中的算法,拼接LSTM输出与输入特征,作者设计了基于乘法的双线性LSTM模型,利用LSTM的隐含层特征(记忆)信息与输入的乘积作为特征,进行匹配分类器的学习。
这里对于隐含层特征ht-1,必须先进行重新排列(reshape)操作,然后才能乘以输入的特征向量xt。
其中f表示非线性激活函数,mt是新的特征输入。而原始的检测图像采用ResNet50提取2048维的特征,并通过全连接降为256维。下表中对于不同网络结构、网络特征维度、以及不同LSTM历史长度时,表观特征的学习对跟踪性能的影响做了验证。
可以看出采用双线性LSTM(bilinear LSTM)的表观特征性能最好,此时的历史相关长度最佳为40,这个值远远超过文献[5]中的2-4帧历史长度。相对来说40帧历史信息影响更接近人类的直觉。
目标跟踪检测算法(一)——传统方法
参考技术A 姓名:刘帆;学号:20021210609;学院:电子工程学院https://blog.csdn.net/qq_34919792/article/details/89893214
【嵌牛导读】目标跟踪算法研究难点与挑战在于实际复杂的应用环境 、背景相似干扰、光照条件的变化、遮挡等外界因素以及目标姿态变化,外观变形,尺度变化、平面外旋转、平面内旋转、出视野、快速运动和运动模糊等。而且当目标跟踪算法投入实际应用时,不可避免的一个问题——实时性问题也是非常的重要。正是有了这些问题,才使得算法研究充满着难点和挑战。
【嵌牛鼻子】目标跟踪算法,传统算法
【嵌牛提问】利用目标跟踪检测算法要达到何目的?第一阶段的单目标追踪算法包括什么?具体步骤有哪些?它们有何特点?
【嵌牛正文】
第一阶段
目标跟踪分为两个部分,一个是对指定目标寻找可以跟踪的特征,常用的有颜色,轮廓,特征点,轨迹等,另一个是对目标特征进行跟踪。
1、静态背景
1)背景差: 对背景的光照变化、噪声干扰以及周期性运动等进行建模。通过当前帧减去背景图来捕获运动物体的过程。
2)帧差: 由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。该类算法对时间上连续的两帧或三帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值,当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检测功能。
与二帧差分法不同的是,三帧差分法(交并运算)去除了重影现象,可以检测出较为完整的物体。帧间差分法的原理简单,计算量小,能够快速检测出场景中的运动目标。但帧间差分法检测的目标不完整,内部含有“空洞”,这是因为运动目标在相邻帧之间的位置变化缓慢,目标内部在不同帧图像中相重叠的部分很难检测出来。帧间差分法通常不单独用在目标检测中,往往与其它的检测算法结合使用。
3)Codebook
算法为图像中每一个像素点建立一个码本,每个码本可以包括多个码元(对应阈值范围),在学习阶段,对当前像素点进行匹配,如果该像素值在某个码元的学习阈值内,也就是说与之前出现过的某种历史情况偏离不大,则认为该像素点符合背景特征,需要更新对应点的学习阈值和检测阈值。
如果新来的像素值与每个码元都不匹配,则可能是由于动态背景导致,这种情况下,我们需要为其建立一个新的码元。每个像素点通过对应多个码元,来适应复杂的动态背景。
在应用时,每隔一段时间选择K帧通过更新算法建立CodeBook背景模型,并且删除超过一段时间未使用的码元。
4)GMM
混合高斯模型(Gaussian of Micture Models,GMM)是较常用的背景去除方法之一(其他的还有均值法、中值法、滑动平均滤波等)。
首先我们需要了解单核高斯滤波的算法步骤:
混合高斯建模GMM(Gaussian Mixture Model)作为单核高斯背景建模的扩展,是目前使用最广泛的一种方法,GMM将背景模型描述为多个分布,每个像素的R、G、B三个通道像素值的变化分别由一个混合高斯模型分布来刻画,符合其中一个分布模型的像素即为背景像素。作为最常用的一种背景建模方法,GMM有很多改进版本,比如利用纹理复杂度来更新差分阈值,通过像素变化的剧烈程度来动态调整学习率等。
5)ViBe(2011)
ViBe算法主要特点是随机背景更新策略,这和GMM有很大不同。其步骤和GMM类似。具体的思想就是为每个像素点存储了一个样本集,样本集中采样值就是该像素点过去的像素值和其邻居点的像素值,然后将每一个新的像素值和样本集进行比较来判断是否属于背景点。
其中pt(x)为新帧的像素值,R为设定值,p1、p2、p3….为样本集中的像素值,以pt(x)为圆心R为半径的圆被认为成一个集,当样本集与此集的交集大于设定的阈值#min时,可认为此为背景像素点(交集越大,表示新像素点与样本集越相关)。我们可以通过改变#min的值与R的值来改变模型的灵敏度。
Step1:初始化单帧图像中每个像素点的背景模型。假设每一个像素和其邻域像素的像素值在空域上有相似的分布。基于这种假设,每一个像素模型都可以用其邻域中的像素来表示。为了保证背景模型符合统计学规律,邻域的范围要足够大。当输入第一帧图像时,即t=0时,像素的背景模型。其中,NG(x,y)表示空域上相邻的像素值,f(xi,yi)表示当前点的像素值。在N次的初始化的过程中,NG(x,y)中的像素点(xi,yi)被选中的可能次数为L=1,2,3,…,N。
Step2:对后续的图像序列进行前景目标分割操作。当t=k时,像素点(x,y)的背景模型为BKm(x,y),像素值为fk(x,y)。按照下面判断该像素值是否为前景。这里上标r是随机选的;T是预先设置好的阈值。当fk(x,y)满足符合背景#N次时,我们认为像素点fk(x,y)为背景,否则为前景。
Step3:ViBe算法的更新在时间和空间上都具有随机性。每一个背景点有1/ φ的概率去更新自己的模型样本值,同时也有1/ φ的概率去更新它的邻居点的模型样本值。更新邻居的样本值利用了像素值的空间传播特性,背景模型逐渐向外扩散,这也有利于Ghost区域的更快的识别。同时当前景点计数达到临界值时将其变为背景,并有1/ φ的概率去更新自己的模型样本值(为了减少缓慢移动物体的影响和摄像机的抖动)。
可以有如下总结,ViBe中的每一个像素点在更新的时候都有一个时间和空间上随机影响的范围,这个范围很小,大概3x3的样子,这个是考虑到摄像头抖动时会有坐标的轻微来回变化,这样虽然由于ViBe的判别方式仍认为是背景点,但是也会对后面的判别产生影响,为了保证空间的连续性,随机更新减少了这个影响。而在样本值保留在样本集中的概率随着时间的增大而变小,这就保证了像素模型在时间上面的延续特性。
6)光流
光流是由物体或相机的运动引起的图像对象在两个连续帧之间的视在运动模式。它是2D矢量场,其中每个矢量是一个位移矢量,显示点从第一帧到第二帧的移动。
光流实际上是一种特征点跟踪方法,其计算的为向量,基于三点假设:
1、场景中目标的像素在帧间运动时亮度(像素值或其衍生值)不发生变化;2、帧间位移不能太大;3、同一表面上的邻近点都在做相同的运动;
光流跟踪过程:1)对一个连续视频帧序列进行处理;2)对每一帧进行前景目标检测;3)对某一帧出现的前景目标,找出具有代表性的特征点(Harris角点);4)对于前后帧做像素值比较,寻找上一帧在当前帧中的最佳位置,从而得到前景目标在当前帧中的位置信息;5)重复上述步骤,即可实现目标跟踪
2、运动场(分为相机固定,但是视角变化和相机是运动的)
1)运动建模(如视觉里程计运动模型、速度运动模型等)
运动学是对进行刚性位移的相机进行构型,一般通过6个变量来描述,3个直角坐标,3个欧拉角(横滚、俯仰、偏航)。
Ⅰ、对相机的运动建模
由于这个不是我们本次所要讨论的重点,但是在《概率机器人》一书中提出了很多很好的方法,相机的运动需要对图像内的像素做位移矩阵和旋转矩阵的坐标换算。除了对相机建立传统的速度运动模型外,也可以用视觉里程计等通关过置信度的更新来得到概率最大位置。
Ⅱ、对于跟踪目标的运动建模
该方法需要提前通过先验知识知道所跟踪的目标对象是什么,比如车辆、行人、人脸等。通过对要跟踪的目标进行建模,然后再利用该模型来进行实际的跟踪。该方法必须提前知道要跟踪的目标对象是什么,然后再去跟踪指定的目标,这是它的局限性,因而其推广性相对比较差。(比如已知跟踪的物体是羽毛球,那很容易通过前几帧的取点,来建立整个羽毛球运动的抛物线模型)
2)核心搜索算法(常见的预测算法有Kalman(卡尔曼)滤波、扩展卡尔曼滤波、粒子滤波)
Ⅰ、Kalman 滤波
Kalman滤波器是通过前一状态预测当前状态,并使用当前观测状态进行校正,从而保证输出状态平稳变化,可有效抵抗观测误差。因此在运动目标跟踪中也被广泛使用。
在视频处理的运动目标跟踪里,每个目标的状态可表示为(x,y,w,h),x和y表示目标位置,w和h表示目标宽高。一般地认为目标的宽高是不变的,而其运动速度是匀速,那么目标的状态向量就应该扩展为(x,y,w,h,dx,dy),其中dx和dy是目标当前时刻的速度。通过kalman滤波器来估计每个时刻目标状态的大致过程为:
对视频进行运动目标检测,通过简单匹配方法来给出目标的第一个和第二个状态,从第三个状态开始,就先使用kalman滤波器预测出当前状态,再用当前帧图像的检测结果作为观测值输入给kalman滤波器,得到的校正结果就被认为是目标在当前帧的真实状态。(其中,Zt为测量值,为预测值,ut为控制量,Kt为增益。)
Ⅱ、扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)
由于卡尔曼滤波的假设为线性问题,无法直接用在非线性问题上,EKF和UKF解决了这个问题(这个线性问题体现在用测量量来计算预测量的过程中)。EKF是通过构建线性函数g(x),与非线性函数相切,并对每一时刻所求得的g(x)做KF,如下图所示。
UKF与EKF去求解雅可比矩阵拟合线性方程的方法不同,通过对那个先验分布中的采集点,来线性化随机变量的非线性函数。与EKF所用的方法不同,UKF产生的高斯分布和实际高斯分布更加接近,其引起的近似误差也更小。
Ⅲ、粒子滤波
1、初始状态:基于粒子滤波的目标追踪方法是一种生成式跟踪方法,所以要有一个初始化的阶段。对于第一帧图像,人工标定出待检测的目标,对该目标区域提出特征;
2、搜索阶段:现在已经知道了目标的特征,然后就在目标的周围撒点(particle), 如:a)均匀的撒点;b)按高斯分布撒点,就是近的地方撒得多,远的地方撒的少。论文里使用的是后一种方法。每一个粒子都计算所在区域内的颜色直方图,如初始化提取特征一样,然后对所有的相似度进行归一化。文中相似性使用的是巴氏距离;
3、重采样:根据粒子权重对粒子进行筛选,筛选过程中,既要大量保留权重大的粒子,又要有一小部分权重小的粒子;
4、状态转移:将重采样后的粒子带入状态转移方程得到新的预测粒子;
5、测量及更新:对目标点特征化,并计算各个粒子和目标间的巴氏距离,更新粒子的权重;
6、决策阶段:每个粒子都获得一个和目标的相似度,相似度越高,目标在该范围出现的可能性越高,将保留的所有粒子通过相似度加权后的结果作为目标可能的位置。
3)Meanshift算法
MeanShift算法属于核密度估计法,它不需要任何先验知识而完全依靠特征空间中样本点的计算其密度函数值。对于一组采样数据,直方图法通常把数据的值域分成若干相等的区间,数据按区间分成若干组,每组数据的个数与总参数个数的比率就是每个单元的概率值;核密度估计法的原理相似于直方图法,只是多了一个用于平滑数据的核函数。采用核函数估计法,在采样充分的情况下,能够渐进地收敛于任意的密度函数,即可以对服从任何分布的数据进行密度估计。
Meanshift算法步骤
1、通过对初始点(或者上一帧的目标点)为圆心,绘制一个半径为R的圆心,寻找特征和该点相似的点所构成的向量;
2、所有向量相加,可以获得一个向量叠加,这个向量指向特征点多的方向;
3、取步骤二的向量终点为初始点重复步骤一、二,直到得到的向量小于一定的阈值,也就是说明当前位置是特征点密度最密集的地方,停止迭代,认为该点为当前帧的目标点;
4)Camshift算法
Camshift算法是MeanShift算法的改进,称为连续自适应的MeanShift算法。Camshift 是由Meanshift 推导而来 Meanshift主要是用在单张影像上,但是独立一张影像分析对追踪而言并无意义,Camshift 就是利用MeanShift的方法,对影像串列进行分析。
1、首先在影像串列中选择目标区域。
2、计算此区域的颜色直方图(特征提取)。
3、用MeanShift演算法来收敛欲追踪的区域。
4、通过目标点的位置和向量信息计算新的窗口大小,并标示之。
5、以此为参数重复步骤三、四。
Camshift 关键就在于当目标的大小发生改变的时候,此算法可以自适应调整目标区域继续跟踪。
3、小结
第一阶段的单目标追踪算法基本上都是传统方法,计算量小,在嵌入式等设备中落地较多,opencv中也预留了大量的接口。通过上面的两节的介绍,我们不难发现,目标检测算法的步骤分为两部分,一部分是对指定目标寻找可以跟踪的特征,常用的有颜色,轮廓,特征点,轨迹等,另一部分是对目标特征进行跟踪,如上文所提及的方法。所以目标检测方法的发展,也可总结为两个方面,一个是如何去获得更加具有区分性的可跟踪的稳定特征,另一个是如何建立帧与帧之间的数据关联,保证跟踪目标是正确的。
随着以概率为基础的卡尔曼滤波、粒子滤波或是以Meanshift为代表向量叠加方法在目标检测的运用,使得目标检测不再需要假设自身的一个状态为静止的,而是可以是运动的,更加符合复杂场景中的目标跟踪。
以上是关于目标跟踪检测算法(四)——多目标扩展的主要内容,如果未能解决你的问题,请参考以下文章