OpenCV基于残差网络实现人脸检测
Posted OpenCV学堂
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了OpenCV基于残差网络实现人脸检测相关的知识,希望对你有一定的参考价值。
OpenCV基于残差网络实现人脸检测
OpenCV3.3版本第一次把深度神经网络(DNN)模块引入到正式发布版本中,最新的OpenCV3.4中DNN模块发布了两个必杀技,一个支持Faster R-CNN的对象检测,比SSD与YOLO这些模型有更好的检测精度与小对象检测能力,另外一个是支持基于SSD+Resnet模型的人脸检测,虽然速度还达不到HAAR级联检测器的实时性,但是准确性与模型泛化能力可以说完爆HAAR级联检测器方式的人脸检测算法。作为OpenCV开发者需要人脸检测功能时候又多了一种更加可靠的选择,这里我们首先简单介绍一下什么是残差网络,然后给出其人脸检测模型在OpenCV基于摄像头实时人脸检测演示。
一:残差网络(Resnet)
最初的CNN网络LeNet与AlexNet卷积层都比较少,VGG通过小的卷积核实现了网络深度的增加取得了显著效果,但是当层数过度增加的时候就发现训练错误与测试错误都在增加,图示如下:
最开始人们以为是因为梯度消失或者梯度爆炸导致的,不过随着大家的努力,认为这个不是一个过拟合问题,而是网络褪化现象,所以针对这种情况,MSRA何凯明团队提出了一种新的网络模型-Residual Networks,其主要思想是使用残差结构来训练网络,一个残差结构如下:
作者认为F(x) = H(x)-x所以得到H(x) = F(x) + x这样的恒等映射,然后作者就建立34层plain网络与34层的残差网络作为对比,而最左边的VGG-19网络作为参考,整个的网络结构显示如下:
模型建立好的之后,作者在不同的数据集上进行了训练与测试,均观察到残差网络的效果要明显优于34层plain网络,而且发现基于残差结构的网络层数越深效果越好,而34层plain网络跟18层的plain网络相比有明显的褪化现象出现。对比训练的结果如下:
在残差网络没有出来之前,很少有网络的层数会超过100层,但是残差网络可以达到上千层,毫无疑问何凯明团队也凭借残差网络模型在2015年的ImageNet图像分类比赛中获得了冠军,当时使用152层的残差网络。OpenCV中人脸检测的残差网络模型是基于SSD实现的,所以速度还是挺快的,而且效果是特别的好。废话不多说了,下面看看OpenCV中如何使用它实现人脸检测。
二:人脸检测代码实现
下载好模型之后放在本地的一个文件夹下即可,然后就可以开始编程工作啦。 首先需要加载模型成网络:
String modelDesc = "D:/vcprojects/images/dnn/face/deploy.prototxt";
String modelBinary = "D:/vcprojects/images/dnn/face/res10_300x300_ssd_iter_140000.caffemodel";
// 初始化网络
dnn::Net net = readNetFromCaffe(modelDesc, modelBinary);
if (net.empty())
{
printf("could not load net...\n");
return -1;
}
然后要打开本地相机或者一段视频文件,使用VideoCapture对象即可,代码如下:
// 打开摄像头
VideoCapture capture(0);
if (!capture.isOpened()) {
printf("could not load camera...\n");
return -1;
}
打开相机成功之后就可以读写每帧图像,然后转换成网络可以接受的数据类型,代码如下:
// 输入数据调整
Mat inputBlob = blobFromImage(frame, inScaleFactor,
Size(inWidth, inHeight), meanVal, false, false);
net.setInput(inputBlob, "data");
然后在OpenCV中通过调用net.forward实现检测,对结果提取置信分数(0~1)之间,对大于阈值(假设0.5)的提取BOX位置,就可以绘制矩形框显示了,这部分的代码如下:
// 人脸检测
Mat detection = net.forward("detection_out");
vector<double> layersTimings;
double freq = getTickFrequency() / 1000;
double time = net.getPerfProfile(layersTimings) / freq;
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());
ostringstream ss;
ss << "FPS: " << 1000 / time << " ; time: " << time << " ms";
putText(frame, ss.str(), Point(20, 20), 0, 0.5, Scalar(0, 0, 255));
for (int i = 0; i < detectionMat.rows; i++)
{
// 置信度 0~1之间
float confidence = detectionMat.at<float>(i, 2);
if (confidence > confidenceThreshold)
{
int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols);
int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows);
int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols);
int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows);
Rect object((int)xLeftBottom, (int)yLeftBottom,
(int)(xRightTop - xLeftBottom),
(int)(yRightTop - yLeftBottom));
rectangle(frame, object, Scalar(0, 255, 0));
ss.str("");
ss << confidence;
String conf(ss.str());
String label = "Face: " + conf;
int baseLine = 0;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height),
Size(labelSize.width, labelSize.height + baseLine)),
Scalar(255, 255, 255), CV_FILLED);
putText(frame, label, Point(xLeftBottom, yLeftBottom),
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0));
}
}
最终运行显示结果如下: 脸部无遮挡,正常情况下:
脸部无遮挡,头部倾斜的情况下:
脸部有遮挡的情况下:
更多倾斜、侧脸、模糊等各种情况下:
一勤天下无难事、
百思胸中有良谋!
关注【OpenCV学堂】
长按或者扫码下面二维码即可关注
+OpenCV识别交流群 657875553
进群暗号:OpenCV
以上是关于OpenCV基于残差网络实现人脸检测的主要内容,如果未能解决你的问题,请参考以下文章
OpenCV+OpenVINO实现人脸Landmarks实时检测
OpenCV+OpenVINO实现人脸Landmarks实时检测