贪心算法:最大子序和

Posted 代码随想录

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了贪心算法:最大子序和相关的知识,希望对你有一定的参考价值。

从本题开始,贪心题目都比较难了!

53. 最大子序和

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:
输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

思路

暴力解法

暴力解法的思路,第一层for 就是设置起始位置,第二层for循环遍历数组寻找最大值

时间复杂度:O(n^2) 空间复杂度:O(1)

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result = INT32_MIN;
        int count = 0;
        for (int i = 0; i < nums.size(); i++) { // 设置起始位置
            count = 0;
            for (int j = i; j < nums.size(); j++) { // 每次从起始位置i开始遍历寻找最大值
                count += nums[j];
                result = count > result ? count : result;
            }
        }
        return result;
    }
};

以上暴力的解法C++勉强可以过,其他语言就不确定了。

贪心解法

「贪心贪的是哪里呢?」

如果 -2 1 在一起,计算起点的时候,一定是从1开始计算,因为负数只会拉低总和,这就是贪心贪的地方!

局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。

全局最优:选取最大“连续和”

「局部最优的情况下,并记录最大的“连续和”,可以推出全局最优」。

从代码角度上来讲:遍历nums,从头开始用count累积,如果count一旦加上nums[i]变为负数,那么就应该从nums[i+1]开始从0累积count了,因为已经变为负数的count,只会拖累总和。

「这相当于是暴力解法中的不断调整最大子序和区间的起始位置」。

「那有同学问了,区间终止位置不用调整么? 如何才能得到最大“连续和”呢?」

区间的终止位置,其实就是如果count取到最大值了,及时记录下来了。例如如下代码:

if (count > result) result = count;

「这样相当于是用result记录最大子序和区间和(变相的算是调整了终止位置)」。

如动画所示:


红色的起始位置就是贪心每次取count为正数的时候,开始一个区间的统计。

那么不难写出如下C++代码(关键地方已经注释)

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result = INT32_MIN;
        int count = 0;
        for (int i = 0; i < nums.size(); i++) {
            count += nums[i];
            if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)
                result = count;
            }
            if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
        }
        return result;
    }
};

时间复杂度:O(n)
空间复杂度:O(1)

当然题目没有说如果数组为空,应该返回什么,所以数组为空的话返回啥都可以了。

动态规划

当然本题还可以用动态规划来做,当前「代码随想录」主要讲解贪心系列,后续到动态规划系列的时候会详细讲解本题的dp方法。

那么先给出我的dp代码如下,有时间的录友可以提前做一做:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        vector<int> dp(nums.size(), 0); // dp[i]表示包括i之前的最大连续子序列和
        dp[0] = nums[0];
        int result = dp[0];
        for (int i = 1; i < nums.size(); i++) {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]); // 状态转移公式
            if (dp[i] > result) result = dp[i]; // result 保存dp[i]的最大值
        }
        return result;
    }
};

时间复杂度:O(n)
空间复杂度:O(n)

总结

本题的贪心思路其实并不好想,这也进一步验证了,别看贪心理论很直白,有时候看似是常识,但贪心的题目一点都不简单!

后续将介绍的贪心题目都挺难的,哈哈,所以贪心很有意思,别小看贪心!

就酱,如果感觉「代码随想录」干货满满,就帮忙分享一波吧,让更多的小伙伴知道这里!

-------end-------

我将算法学习相关的资料已经整理到了Github :https://github.com/youngyangyang04/leetcode-master,里面还有leetcode刷题攻略、各个类型经典题目刷题顺序、思维导图看一看一定会有所收获,如果给你有帮助给一个star支持一下!

「代码随想录」期待你的关注!

每天8:35准时推送一道经典算法题目,推送的每道题目都不是孤立的,而是由浅入深,环环相扣,帮你梳理算法知识脉络,轻松学算法!

贪心算法:最大子序和
刷题可以加我微信!
右边为个人微信,添加时备注:简单自我介绍」+组队题」
我就知道你[在看]


以上是关于贪心算法:最大子序和的主要内容,如果未能解决你的问题,请参考以下文章

贪心——力扣53.最大子序和&&力扣122.买卖股票的最佳时机Ⅱ

LeetCode 53 最大子序和[贪心] HERODING的LeetCode之路

最大子序和

LeetCode 53. 最大子序和

最大子序和/积

最大子序和