朴素贝叶斯基础
Posted 墨词和她的爬虫
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了朴素贝叶斯基础相关的知识,希望对你有一定的参考价值。
朴素:特征条件独立,整个形式化过程只做最原始最简单的假设
贝叶斯:基于贝叶斯定理
属于监督学习的生成模型,解决的是分类问题,如垃圾邮件分类,客户是否流失、是否值得投资、信用等级评定等多分类问题
1:条件概率:就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。
条件概率公式:
或者:
2:全概率:如果A和A’构成样本空间的一个划分,那么事件B的概率,就等于A和A’的概率分别乘以B对这两个事件的条件概率之和。
3:贝叶斯推断:
条件概率公式进行变形,可以得到如下形式:
我们把P(A)称为"先验概率"(Prior probability),即在B事件发生之前,我们对A事件概率的一个判断。
P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。
P(B|A)/P(B)称为"可能性函数"(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。
所以,条件概率可以理解成下面的式子:
后验概率 = 先验概率 x 调整因子
如果"可能性函数"P(B|A)/P(B)>1,意味着"先验概率"被增强,事件A的发生的可能性变大;如果"可能性函数"=1,意味着B事件无助于判断事件A的可能性;如果"可能性函数"<1,意味着"先验概率"被削弱,事件A的可能性变小。
4:朴素贝叶斯
朴素贝叶斯对条件个概率分布做了条件独立性的假设。 比如下面的公式,假设有n个特征:
拆分公式:
以在线社区留言为例。为了不影响社区的发展,我们要屏蔽侮辱性的言论,所以要构建一个快速过滤器,如果某条留言使用了负面或者侮辱性的语言,那么就将该留言标志为内容不当。过滤这类内容是一个很常见的需求。对此问题建立两个类型:侮辱类和非侮辱类,使用1和0分别表示。
我们把文本看成单词向量或者词条向量,也就是说将句子转换为向量。考虑出现所有文档中的单词,再决定将哪些单词纳入词汇表或者说所要的词汇集合,然后必须要将每一篇文档转换为词汇表上的向量。简单起见,我们先假设已经将本文切分完毕,存放到列表中,并对词汇向量进行分类标注。
1:创建实验样本
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], #切分的词条
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #类别标签向量,1代表侮辱性词汇,0代表不是
return postingList,classVec
2:将切分的实验样本词条整理成不重复的词条列表,也就是词汇表
def createVocabList(dataSet):
vocabSet = set([]) #创建一个空的不重复列表
for document in dataSet:
vocabSet = vocabSet | set(document) #操作符|用于求两个集合的并集,
return list(vocabSet)
3:根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0] * len(vocabList) #创建一个其中所含元素都为0的向量
for word in inputSet: #遍历每个词条
if word in vocabList: #如果词条存在于词汇表中,则置1
returnVec[vocabList.index(word)] = 1
else: print("the word: %s is not in my Vocabulary!" % word)
return returnVec #返回文档向量
4:查看效果
if __name__ == '__main__':
postingList, classVec = loadDataSet()
print('postingList:\n',postingList)
myVocabList = createVocabList(postingList)
print('myVocabList:\n',myVocabList)
trainMat = []
for postinDoc in postingList:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
print('trainMat:\n', trainMat)
结果部分截图:
postingList是原始的词条列表,
myVocabList是词汇表。myVocabList是所有单词出现的集合,没有重复的元素。它是用来将词条向量化的,一个单词在词汇表中出现过一次,那么就在相应位置记作1,如果没有出现就在相应位置记作0。
trainMat是所有的词条向量组成的列表。它里面存放的是根据myVocabList向量化的词条向量。
1:朴素贝叶斯分类器训练函数
import numpy as np
def trainNB0(trainMatrix,trainCategory): #trainMatrix - 训练文档矩阵,即setOfWords2Vec返回的returnVec构成的矩阵 trainCategory - 训练类别标签向量,即loadDataSet返回的classVec
numTrainDocs = len(trainMatrix) #计算训练的文档数目
numWords = len(trainMatrix[0]) #计算每篇文档的词条数
pAbusive = sum(trainCategory)/float(numTrainDocs) #文档属于侮辱类的概率
p0Num = np.zeros(numWords); p1Num = np.zeros(numWords) #创建numpy.zeros数组,词条出现数初始化为0
p0Denom = 0.0; p1Denom = 0.0 #分母初始化为0
for i in range(numTrainDocs):
if trainCategory[i] == 1: #统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else: #统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = p1Num/p1Denom
p0Vect = p0Num/p0Denom
return p0Vect,p1Vect,pAbusive #返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率
2:查看结果
if __name__ == '__main__':
postingList, classVec = loadDataSet()
myVocabList = createVocabList(postingList)
print('myVocabList:\n', myVocabList)
trainMat = []
for postinDoc in postingList:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V, p1V, pAb = trainNB0(trainMat, classVec)
print('p0V:\n', p0V) #p0V存放的是非侮辱类词汇的概率
print('p1V:\n', p1V) #p1V存放的是侮辱类词汇的概率
print('classVec:\n', classVec)
print('pAb:\n', pAb) #pAb就是先验概率。
运行结果:
1:上面测试中,计算(w0|1),P(w1|1),P(w2|1)···时假如其中一个概率为0,则我们最后结果也为了零,为了降低这种数的影响我们可以将所有的词初始化为1,并将分母初始化为2,这种做法就叫做拉普拉斯平滑(Laplace Smoothing)又被称为加1平滑,是比较常用的平滑方法,它就是为了解决0概率问题。我们将上一节的朴素贝叶斯分类器训练函数改为下面这个:
import numpy as np
def trainNB0(trainMatrix,trainCategory): #trainMatrix - 训练文档矩阵,即setOfWords2Vec返回的returnVec构成的矩阵 trainCategory - 训练类别标签向量,即loadDataSet返回的classVec
numTrainDocs = len(trainMatrix) #计算训练的文档数目
numWords = len(trainMatrix[0]) #计算每篇文档的词条数
pAbusive = sum(trainCategory)/float(numTrainDocs) #文档属于侮辱类的概率
p0Num = np.ones(numWords); p1Num = np.ones(numWords) ##创建numpy.ones数组,词条出现数初始化为1,拉普拉斯平滑
p0Denom =2.0; p1Denom = 2.0 #分母初始化为2
for i in range(numTrainDocs):
if trainCategory[i] == 1: #统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else: #统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = np.log(p1Num/p1Denom)
p0Vect = np.log(p0Num/p0Denom)
return p0Vect,p1Vect,pAbusive #返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率
运行结果:
这样我们得到的结果就没有问题了,不存在0概率
2:还有一种问题就是下溢出,这是由于太多很小的数相乘造成的。学过数学的人都知道,两个小数相乘,越乘越小,这样就造成了下溢出。这种情况解决办法是对乘积取自然对数logab = loga + logb。
朴素贝叶斯分类器分类函数
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + np.log(pClass1) #对应元素相乘。logA * B = logA + logB,所以这里加上log(pClass1)
p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
测试朴素贝叶斯分类器
def testingNB():
listOPosts,listClasses = loadDataSet() #创建实验样本
myVocabList = createVocabList(listOPosts) #创建词汇表
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))#将实验样本向量化
p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses))#训练朴素贝叶斯分类器
testEntry = ['love', 'my', 'dalmation'] #测试样本1
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry)) #测试样本向量化
if classifyNB(thisDoc,p0V,p1V,pAb):
print(testEntry,'属于侮辱类') #执行分类并打印分类结果
else:
print(testEntry,'属于非侮辱类') #执行分类并打印分类结果
testEntry = ['stupid', 'garbage'] #测试样本2
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))#测试样本向量化
if classifyNB(thisDoc,p0V,p1V,pAb):
print(testEntry,'属于侮辱类') #执行分类并打印分类结果
else:
print(testEntry,'属于非侮辱类') #执行分类并打印分类结果
if __name__ == '__main__':
testingNB()
3:运行结果
这样,我们的朴素贝叶斯分类器就改进完毕了。
图大,扫描关注我吧
以上是关于朴素贝叶斯基础的主要内容,如果未能解决你的问题,请参考以下文章