大规模使用 Apache Kafka 的20个最佳实践

Posted 过往记忆大数据

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大规模使用 Apache Kafka 的20个最佳实践相关的知识,希望对你有一定的参考价值。

Apache Kafka是一款流行的分布式数据流平台,它已经广泛地被诸如New Relic(数据智能平台)、Uber、Square(移动支付公司)等大型公司用来构建可扩展的、高吞吐量的、且高可靠的实时数据流系统。例如,在New Relic的生产环境中,Kafka群集每秒能够处理超过1500万条消息,而且其数据聚合率接近1 Tbps。

可见,Kafka大幅简化了对于数据流的处理,因此它也获得了众多应用开发人员和数据管理专家的青睐。然而,在大型系统中Kafka的应用会比较复杂。如果您的consumers无法跟上数据流的话,各种消息往往在未被查看之前就已经消失掉了。同时,它在自动化数据保留方面的限制,高流量的发布+订阅(publish-subscribe,pub/sub)模式等,可能都会影响到您系统的性能。可以毫不夸张地说,如果那些存放着数据流的系统无法按需扩容、或稳定性不可靠的话,估计您经常会寝食难安了。

为了减少上述复杂性,我在此分享New Relic公司为Kafka集群在应对高吞吐量方面的20项最佳实践。我将从如下四个方面进行展开:

  • Partitions(分区)

  • Consumers(消费者)

  • Producers(生产者)

  • Brokers(代理)

快速了解Kafka的概念与架构

Kafka是一种高效的分布式消息系统。在性能上,它具有内置的数据冗余度与弹性,也具有高吞吐能力和可扩展性。在功能是,它支持自动化的数据保存限制,能够以“流”的方式为应用提供数据转换,以及按照“键-值(key-value)”的建模关系“压缩”数据流。

要了解各种最佳实践,您需要首先熟悉如下关键术语:

Message(消息):Kafka中的一条记录或数据单位。每条消息都有一个键和对应的一个值,有时还会有可选的消息头。

Producer(生产者):producer将消息发布到Kafka的topics上。producer决定向topic分区的发布方式,如:轮询的随机方法、或基于消息键(key)的分区算法。

Broker(代理):Kafka以分布式系统或集群的方式运行。那么群集中的每个节点称为一个broker。

Topic(主题):topic是那些被发布的数据记录或消息的一种类别。消费者通过订阅topic,来读取写给它们的数据。

Topic partition(主题分区):不同的topic被分为不同的分区,而每一条消息都会被分配一个offset,通常每个分区都会被复制至少一到两次。每个分区都有一个leader和存放在各个follower上的一到多个副本(即:数据的副本),此法可防止某个broker的失效。群集中的所有broker都可以作为leader和follower,但是一个broker最多只能有一个topic partition的副本。Leader可被用来进行所有的读写操作。

Offset(偏移量):单个分区中的每一条消息都被分配一个offset,它是一个单调递增的整型数,可用来作为分区中消息的唯一标识符。

Consumer(消费者):consumer通过订阅topic partition,来读取Kafka的各种topic消息。然后,消费类应用处理会收到消息,以完成指定的工作。

Consumer group(消费组):consumer可以按照consumer group进行逻辑划分。topic partition被均衡地分配给组中的所有consumers。因此,在同一个consumer group中,所有的consumer都以负载均衡的方式运作。换言之,同一组中的每一个consumer都能看到每一条消息。如果某个consumer处于“离线”状态的话,那么该分区将会被分配给同组中的另一个consumer。这就是所谓的“再均衡(rebalance)”。当然,如果组中的consumer多于分区数,则某些consumer将会处于闲置的状态。相反,如果组中的consumer少于分区数,则某些consumer会获得来自一个以上分区的消息。

Lag(延迟):当consumer的速度跟不上消息的产生速度时,consumer就会因为无法从分区中读取消息,而产生延迟。延迟表示为分区头后面的offset数量。从延迟状态(到“追赶上来”)恢复正常所需要的时间,取决于consumer每秒能够应对的消息速度。其公式如下:

time = messages / (consume rate per second - produce rate per second)

针对Partitions的最佳实践

了解分区的数据速率,以确保提供合适的数据保存空间。此处所谓“分区的数据速率”是指数据的生成速率。换言之,它是由“平均消息大小”乘以“每秒消息数”得出的。数据速率决定了在给定时间内,所能保证的数据保存空间的大小(以字节为单位)。如果您不知道数据速率的话,则无法正确地计算出满足基于给定时间跨度的数据,所需要保存的空间大小。同时,数据速率也能够标识出单个consumer在不产生延时的情况下,所需要支持的最低性能值。

除非您有其他架构上的需要,否则在写topic时请使用随机分区。在您进行大型操作时,各个分区在数据速率上的参差不齐是非常难以管理的。其原因来自于如下三个方面:

  • 首先,“热”(有较高吞吐量)分区上的consumer势必会比同组中的其他consumer处理更多的消息,因此很可能会导致出现在处理上和网络上的瓶颈。

  • 其次,那些为具有最高数据速率的分区,所配置的最大保留空间,会导致topic中其他分区的磁盘使用量也做相应地增长。

  • 第三,根据分区的leader关系所实施的最佳均衡方案,比简单地将leader关系分散到所有broker上,要更为复杂。在同一topic中,“热”分区会“承载”10倍于其他分区的权重。

针对Consumers的最佳实践

如果consumers运行的是比Kafka 0.10还要旧的版本,那么请马上升级。在0.8.x 版中,consumer使用Apache ZooKeeper来协调consumer group,而许多已知的bug会导致其长期处于再均衡状态,或是直接导致再均衡算法的失败(我们称之为“再均衡风暴”)。因此在再均衡期间,一个或多个分区会被分配给同一组中的每个consumer。而在再均衡风暴中,分区的所有权会持续在各个consumers之间流转,这反而阻碍了任何一个consumer去真正获取分区的所有权。

调优consumer的套接字缓冲区(socket buffers),以应对数据的高速流入。在Kafka的0.10.x版本中,参数receive.buffer.bytes的默认值为64 kB。而在Kafka的0.8.x版本中,参数socket.receive.buffer.bytes的默认值为100 kB。这两个默认值对于高吞吐量的环境而言都太小了,特别是如果broker和consumer之间的网络带宽延迟积(bandwidth-delay product)大于局域网(local area network,LAN)时。对于延迟为1毫秒或更多的高带宽的网络(如10 Gbps或更高),请考虑将套接字缓冲区设置为8或16 MB。如果您的内存不足,也至少考虑设置为1 MB。当然,您也可以设置为-1,它会让底层操作系统根据网络的实际情况,去调整缓冲区的大小。但是,对于需要启动“热”分区的consumers来说,自动调整可能不会那么快。

设计具有高吞吐量的consumers,以便按需实施背压(back-pressure)。通常,我们应该保证系统只去处理其能力范围内的数据,而不要超负荷“消费”,进而导致进程中断“挂起”,或出现consume group的溢出。如果是在Java虚拟机(JVM)中运行,consumers应当使用固定大小的缓冲区(请参见Disruptor模式:http://lmax-exchange.github.io/disruptor/files/Disruptor-1.0.pdf),而且最好是使用堆外内存(off-heap)。固定大小的缓冲区能够阻止consumer将过多的数据拉到堆栈上,以至于JVM花费掉其所有的时间去执行垃圾回收,进而无法履行其处理消息的本质工作。

在JVM上运行各种consumers时,请警惕垃圾回收对它们可能产生的影响。例如,长时间垃圾回收的停滞,可能导致ZooKeeper的会话被丢弃、或consumer group处于再均衡状态。对于broker来说也如此,如果垃圾回收停滞的时间太长,则会产生集群掉线的风险。

针对Producers的最佳实践

• 配置producer,以等待各种确认。籍此producer能够获知消息是否真正被发送到了broker的分区上。在Kafka的0.10.x版本上,其设置是acks;而在0.8.x版本上,则为request.required.acks。Kafka通过复制,来提供容错功能,因此单个节点的故障、或分区leader关系的更改不会影响到系统的可用性。如果您没有用acks来配置producer(或称“fire and forget”)的话,则消息可能会悄然丢失。

• 为各个producer配置retries。其默认值为3,当然是非常低的。不过,正确的设定值取决于您的应用程序,即:就那些对于数据丢失零容忍的应用而言,请考虑设置为Integer.MAX_VALUE(有效且最大)。这样将能够应对broker的leader分区出现无法立刻响应produce请求的情况。

• 为高吞吐量的producer,调优缓冲区的大小,特别是buffer.memory和batch.size(以字节为单位)。由于batch.size是按照分区设定的,而producer的性能和内存的使用量,都可以与topic中的分区数量相关联。因此,此处的设定值将取决于如下几个因素:producer数据速率(消息的大小和数量)、要生成的分区数、以及可用的内存量。请记住,将缓冲区调大并不总是好事,如果producer由于某种原因而失效了(例如,某个leader的响应速度比确认还要慢),那么在堆内内存(on-heap)中的缓冲的数据量越多,其需要回收的垃圾也就越多。

• 检测应用程序,以跟踪诸如生成的消息数、平均消息大小、以及已使用的消息数等指标。

针对Brokers的最佳实践

• 在各个brokers上,请压缩topics所需的内存和CPU资源。日志压缩(请参见https://kafka.apache.org/documentation/#compaction)需要各个broker上的堆栈(内存)和CPU周期都能成功地配合实现。而如果让那些失败的日志压缩数据持续增长的话,则会给brokers分区带来风险。您可以在broker上调整log.cleaner.dedupe.buffer.size和log.cleaner.threads这两个参数,但是请记住,这两个值都会影响到各个brokers上的堆栈使用。如果某个broker抛出OutOfMemoryError异常,那么它将会被关闭、并可能造成数据的丢失。而缓冲区的大小和线程的计数,则取决于需要被清除的topic partition数量、以及这些分区中消息的数据速率与密钥的大小。对于Kafka的0.10.2.1版本而言,通过ERROR条目来监控日志清理程序的日志文件,是检测其线程可能出现问题的最可靠方法。

• 通过网络吞吐量来监控brokers。请监控发向(transmit,TX)和收向(receive,RX)的流量,以及磁盘的I/O、磁盘的空间、以及CPU的使用率,而且容量规划是维护群集整体性能的关键步骤。

• 在群集的各个brokers之间分配分区的leader关系。Leader通常会需要大量的网络I/O资源。例如,当我们将复制因子(replication factor)配置为3、并运行起来时,leader必须首先获取分区的数据,然后将两套副本发送给另两个followers,进而再传输到多个需要该数据的consumers上。因此在该例子中,单个leader所使用的网络I/O,至少是follower的四倍。而且,leader还可能需要对磁盘进行读操作,而follower只需进行写操作。

• 不要忽略监控brokers的in-sync replica(ISR)shrinks、under-replicated partitions和unpreferred leaders。这些都是集群中潜在问题的迹象。例如,单个分区频繁出现ISR收缩,则暗示着该分区的数据速率超过了leader的能力,已无法为consumer和其他副本线程提供服务了。

• 按需修改Apache Log4j(https://github.com/apache/kafka/blob/trunk/config/log4j.properties)的各种属性。Kafka的broker日志记录会耗费大量的磁盘空间,但是我们却不能完全关闭它。因为有时在发生事故之后,需要重建事件序列,那么broker日志就会是我们最好的、甚至是唯一的方法。

• 禁用topic的自动创建,或针对那些未被使用的topics建立清除策略。例如,在设定的x天内,如果未出现新的消息,您应该考虑该topic是否已经失效,并将其从群集中予以删除。此举可避免您花时间去管理群集中被额外创建的元数据。

• 对于那些具有持续高吞吐量的brokers,请提供足够的内存,以避免它们从磁盘子系统中进行读操作。我们应尽可能地直接从操作系统的缓存中直接获取分区的数据。然而,这就意味着您必须确保自己的consumers能够跟得上“节奏”,而对于那些延迟的consumer就只能强制broker从磁盘中读取了。

• 对于具有高吞吐量服务级别目标(service level objectives,SLOs)的大型群集,请考虑为brokers的子集隔离出不同的topic。至于如何确定需要隔离的topics,则完全取决于您自己的业务需要。例如,您有一些使用相同群集的联机事务处理(multiple online transaction processing,OLTP)系统,那么将每个系统的topics隔离到不同brokers子集中,则能够有助于限制潜在事件的影响半径。

• 在旧的客户端上使用新的topic消息格式。应当代替客户端,在各个brokers上加载额外的格式转换服务。当然,最好还是要尽量避免这种情况的发生。

• 不要错误地认为在本地主机上测试好broker,就能代表生产环境中的真实性能了。要知道,如果使用复制因子为1,并在环回接口上对分区所做的测试,是与大多数生产环境截然不同的。在环回接口上网络延迟几乎可以被忽略的,而在不涉及到复制的情况下,接收leader确认所需的时间则同样会出现巨大的差异。

其他资源

希望上述各项建议能够有助于您更有效地去使用Kafka。如果您想提高自己在Kafka方面的专业知识,请进一步查阅Kafka配套文档中的“操作”部分,其中包含了有关操作群集等实用信息。此外,Confluent(https://www.confluent.io/)也会定期举行并发布各种在线讨论,以帮助您更好地了解Kafka。

本文英文原文《20 Best Practices for Working With Apache Kafka at Scale》:https://blog.newrelic.com/engineering/kafka-best-practices/


猜你喜欢

回复 spark_summit_201806 下载 Spark Summit North America 201806 全部PPT

spark_summit_eu_2018 下载 Spark+AI Summit europe 2018 全部PPT

0、回复 电子书 获取 本站所有可下载的电子书

1、

2、

3、

4、

5、

6、

7、

8、

9、

10、

11、更多大数据文章欢迎访问https://www.iteblog.com及本公众号(iteblog_hadoop)
12、Flink中文文档:
http://flink.iteblog.com
13、Carbondata 中文文档
http://carbondata.iteblog.com


以上是关于大规模使用 Apache Kafka 的20个最佳实践的主要内容,如果未能解决你的问题,请参考以下文章

Apache Kafka 在大型应用中的 20 项最佳实践

3个离不开Apache Kafka的行业

Apache Kafka

Kafka----Apache Kafka官网首页

译Apache Kafka最佳实践

kafka使用Apache Kafka构建可靠的再处理和死信队列