商业智能简史,一切要从1865年说起

Posted 品觉

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了商业智能简史,一切要从1865年说起相关的知识,希望对你有一定的参考价值。

商业智能简史,一切要从1865年说起

原文A BriefHistory of Business Intelligence

来源: http://www.dataversity.net/brief-history-business-intelligence/


  1. 从本质上说,现代版的商业智能利用技术,在正确的时间,依据正确的信息,迅速且有效地作出决策。

  2. 上世纪80年代,商业人士发现了商业智能的价值,于是BI供应商的数量大增。那期间,各种各样的工具纷纷面世,目标是以更简单的方式访问和组织数据。联机分析处理(OLAP)、主管信息系统(EIS)和数据仓库应运而生,与DSS协同工作。

  3. 商业智能代表了为决策者提供辅助的一系列技术,而数据分析则代表了处理数据的一系列工具,并且作为一个统称,涵盖了数据仓库、企业信息管理、商业智能、企业绩效管理和企业治理。



原文翻译:


1865年,理查德·米勒·德文斯(Richard Millar Devens)在《商业趣闻百科全书》(Cyclopædiaof Commercial and Business Anecdotes)中提出了“商业智能”(BI)一词。他用这个词来描述银行家亨利·福尼斯(HenryFurnese)通过收集信息并根据这些信息,先于竞争对手采取行动,从而获利。1958年,IBM计算机科学家汉斯·彼得·卢恩(Hans PeterLuhn)撰文讨论了利用技术来收集商业智能的潜力。按照今天的理解,商业智能就是利用技术来收集和分析数据,将之转换成有用的信息,并根据这些信息,“先于竞争对手”采取行动。从本质上说,现代版的商业智能利用技术,在正确的时间,依据正确的信息,迅速且有效地作出决策。

1968年时,只有那些具备专业技能的人,才能把数据转换成可用的信息。那时,来自多个来源的数据通常储存在筒仓中,研究报告呈碎片化,彼此脱节,可以作出多种不同的解读。埃德加·科德(Edgar Codd)认识到,这是个严重的问题。1970年,他发表文章,改变了人们思考数据库的方式。他关于建立“关联式数据库模型”的提议获得了巨大关注,被全世界所采纳。

决策支持系统(DSS)是第一个数据库管理系统。很多历史学家都认为,现代版的商业智能是从DSS数据库演化而来。上世纪80年代,商业人士发现了商业智能的价值,于是BI供应商的数量大增。那期间,各种各样的工具纷纷面世,目标是以更简单的方式访问和组织数据。联机分析处理(OLAP)、主管信息系统(EIS)和数据仓库应运而生,与DSS协同工作。


OLAP

OLAP让用户可以分析多来源数据,并提供多个范式或视角。OLAP的数据库采用多维数据模型,支持复杂分析和即席查询。OLAP的标准应用包括:

  ·  销售业务报告

  ·  营销

  ·  管理报告

  ·  业务流程管理(BPM

  ·  预算编制和预测

  ·  财务报告和类似领域

  ·  新应用,比如农业

OLAP“曾经”非常流行,因为它提供了多种多样的信息收集和组织方式。作为基于SQL的程序,OLAPNoSQL流行起来后,就渐渐失势。(现在,Kyvos InsightsPlatforaAtScale等公司把OLAP叠加到NoSQL库之上。)OLAP支持三个基本操作:

  ·  合并

  ·  下钻

  ·  切片和切丁

合并是指把那些可以通过多种方式储存和处理的数据结合起来。例如,所有分支机构的汽车销售数据由销售经理汇总,以预测销售趋势。下钻是指查看和分析更详细的数据,比如按照颜色、类型或燃料种类,来查看汽车销售数据。切片和切丁是指选取OLAP立方体中的特定数据,从不同的角度,进行细致观察。


EIS

上世纪70年代末,CEO们开始使用互联网来探究商业信息。EIS由此诞生,为高管提供决策方面的支持。EIS旨在提供“简化”决策过程所需的适当和最新信息,强调以图表和易用界面的方式,来呈现这些信息。EIS的目标是把高管变成“亲自动手”的用户,让他们自己处理邮件、进行研究、作出任命和阅读报告,而不是通过中间人接收这些信息。但由于作用有限,EIS渐渐失宠。


数据仓库

上世纪80年代,企业开始经常使用内部数据分析解决方案(由于当时计算机系统的限制,这通常是在下班后和周末进行),因此数据仓库开始流行。在数据仓库出现之前,企业需要大量的数据冗余,以便向参与决策的所有人提供有用的信息。数据仓库大幅缩短了访问数据所需的时间。通常储存在多个地方(往往是部门筒仓)的数据,现在可以储存在同一个地方。

数据仓库还有助于推动大数据的使用。突然之间,数量庞大、形式多样的数据(电子邮件、互联网、FacebookTwitter等等)可以从同一个地方访问,这节约了时间和资金,并且还能访问先前访问不了的商业信息。在提供由数据驱动的洞见方面,数据仓库潜力巨大。这些洞见可以提高利润、发现欺诈、减少损失。


商业智能迈向高科技

1988年,在罗马举行的多路数据分析大会结束后不久,商业智能开始作为一个技术概念出现。在这场大会上得出的结论促使人们开始简化BI分析,并使之对用户更加友好。BI企业大量涌现,每家新公司都提供新的BI工具。在那个时期,BI有两项基本功能:产生数据和提供报告,并以适当的方式组织和呈现数据。

20世纪末、21世纪初,BI服务开始提供简化的工具,降低决策者对工具的依赖度。这些工具更易于使用,而且提供所需的功能,非常有效。商业人士可以通过直接与数据打交道的方式,收集数据,获取洞见。


商业智能VS数据分析

目前,商业智能和数据分析常常被混用。这两个术语都描述了在商业决策过程中使用数据的普遍实践。商业智能代表了为决策者提供辅助的一系列技术,而数据分析则代表了处理数据的一系列工具,并且作为一个统称,涵盖了数据仓库、企业信息管理、商业智能、企业绩效管理和企业治理。


描述性分析

描述性分析是指描述和总结数据,主要聚焦历史信息,通过描述过去,帮助用户了解以前的行为如何影响现在。描述性分析能用来解释企业如何运作,描述业务的不同方面。在最理想的情况下,描述性分析能讲述一件具有相关主题的事情,并提供有用的信息。


预测性分析

预测性分析能预测未来,它利用统计数据,为企业提供关于未来变化的有用信息,比如判断销售趋势和购买模式、预测消费者行为。其商业用途通常包括,预测销售增长速度、消费者可能购买哪些产品,以及预测库存总量。信用评分是这类分析的一个用例,金融服务机构利用信用评分来评估客户按时还款的可能性。


规定性分析

规定性分析是一个相对较新的领域,应用难度还比较大。它会“规定”几个不同的可能行为,引导人们找到解决方案。这类分析的核心在于提供建议。从本质上说,规定性分析会预测今后可能出现的多种情况,并让企业根据他们的行为,对可能出现的多种结果进行评估。在最理想的情况下,规定性分析可以预测将来会发生什么、为什么会发生,并提供建议。一些大公司已经利用规定性分析,成功优化了日程安排、收入流和库存,从而改善了客户体验。


流分析

流分析是一个实时过程,不断计算、监测和管理基于数据的统计信息,并根据这些信息,“先于竞争对手”采取行动。这个过程中,你可以在任何特定时间,了解市场上发生的事件,并根据这些事件采取行动。作为一种新的工具,流分析大幅改善了提供给决策者的有用信息流。

用于流分析的数据可以有多种来源,包括手机、物联网、市场数据、交易和移动设备(平板电脑和笔记本电脑)。它能迅速有效地将管理人员和外部数据源联系起来,让应用程序把数据并入一个应用流,或者用处理后的信息更新外部数据库。流分析支持:

  ·  最大限度地减少社交媒体危机、安全漏洞、飞机失事、制造缺陷、股市暴跌、客户流失等事件造成的损失

  ·  实时分析企业日常经营

  ·  利用大数据寻找错过的机遇

  ·  创建新的商业模式、收入流和产品创新


芝加哥利用MongoDB开发的WindyGrid项目就是流分析的一个用例。WindyGrid把来自各个市政部门的700万个数据点加以整合,让芝加哥市政人员可以分析数据,预测哪里需要资源,然后相应地分配资源,有效地解决问题。市政人员可以更迅速地作出更明智的决定,更有效地分配资源。WindyGrid为芝加哥带来了革命性的变化,使之能够以具有成本效益的方式,了解、准备和应对各种各样的情况。





车品觉简介


畅销书《决战大数据》作者

红杉资本中国基金专家合伙人

国信优易数据研究院院长

滨海泰达物流(HK:08348)非執行董事


香港特区创新科技及再工业化委员会委员

贵阳市大数据委顧问

上海市司法局大数据实验室专家

CCF大数据委副主任

乌镇智厍理事


浙江大学管理学院兼职教授

清华大学(大数据项目)教育指导委员

Advisory Committee of Big Data institute - HKUST


全国信标委大数据标准工作组副组长(2015-2017)

原阿里巴巴集团副总裁

原阿里健康(HK:00241)独立董事

原阿里数据委员会会长


2014年领导阿里数据团队获得Top CIO评选为中国最佳信息化团队

2017年被国家信息中心选为中国十大最具影响力大数据企业家


拥有十几年丰富的数据实战经验,并在实践中形成了独特的数据化思考及管理方式,对大数据未来趋势有独到见解;亲自领导阿里数据团队在大数据实践领域取得了一系列重要成果,包括为阿里建立集团各事业群的业务及决策分析框架,开发智能化的数据产品,成立了驱动集团数据化的运营团队,成功发起了公共与专有数据资产管理体系,还发布了数据安全规范等


以上是关于商业智能简史,一切要从1865年说起的主要内容,如果未能解决你的问题,请参考以下文章

IT简史 | 马文·明斯基 Marvin Minsky - 人工智能之父

人工智能65年简史:从麦卡锡到Hinton,人类追求的AI究竟是什么?

人工智能65年简史:从麦卡锡到Hinton,人类追求的AI究竟是什么?

一切都要从MyCat的配置说起

人工智能畅想——《人工智能简史》读后感

人工智能畅想——《人工智能简史》读后感