按DIC预测,中国区SDS存储销售从2018年到2023年将保持20%以上的年化增长率;随着5G、物联网和人工智能快速发展,到2023年,全球40%左右的存储系统都将是分布式存储架构。另一家调研机构Zion Market Research更是预测,全球分布式存储的销售额将从2018年的20亿美元快速增长到2027年的285亿美元,年化增长率高达34.7%。无论从过去几年的销售数据还是未来几年的销售预测来看,分布式存储的春天已经到来,以Ceph为代表的开源分布式存储蓬勃发展,以EMC、华为为代表的专业存储厂商重兵投入,同样也印证了这一结论。分布式存储技术发展趋势分布式存储是未来的发展方向已成为业界共识,那么分布式存储技术上又有哪些发展趋势呢,这点可以从Gartner分布式文件&对象存储关键能力要求和各大主流厂商的产品方向上来看一下:极致效率Gartner对第二存储的定义是:首要目的是经济高效地支持延迟和IOPS不是必需属性的非结构化数据工作负载, 典型用例包括长期归档,大数据分析应用程序的存储库,深度历史研究以及备份/恢复软件的备份/恢复目标。这就意味着,分布式存储的首要目标是提供极致效率的数据存储方案。从Gartner分布式文件&对象存储关键能力要求来看,效率主要体现在几个方面:Ø 扩展性:整集群应具备扩展到几百甚至上千存储节点的能力,简化管理;单文件系统或单桶需要支持几百甚至上千亿文件,应对现在及未来的海量文件挑战。Ø 互通性:以自动驾驶为代表的新型应用已经越来越多的使用了文件、对象、HDFS多种访问协议,多协议互通可以避免文件的多次拷贝,有效提升文件的共享访问效率。Ø 存储效率:分布式存储需要使用大比例EC(Erasure Coding)替代传统的副本技术,获得更高的存储利用率;应具备重删、压缩等数据缩减能力,相同硬件可存储更多的用户数据;应支持高密硬件,应对海量数据的空间占用和功耗问题;应具备数据分级能力,热、温、冷数据可以使用不同的存储硬件;极致性能分布式存储不以支持低时延和高IOPS为首要目标,但并不意味着性能对分布式存储就不重要了。IDC在《Data Age 2025》的报告中预测,实时数据占比将逐年提升,到2025年实时数据占比将达到30%,这么大规模的实时数据,很大一部分是需要借助分布式存储实现数据采集、存储和分析的,这就需要分布式存储能够提供极致性能来应对。
DIC全球实时数据占比预测
比较典型的如金融的风险评估、交通的自动驾驶、新兴的AI应用,都需要从海量数据中快速获取所需的信息并进行实时分析,这就要求存储提供亚毫秒级的响应时延,同时以高扩展性应对高并发处理性能需求。业界主流厂商如EMC、PureStorage、华为等都推出了基于全闪存的分布式存储产品,通过存储软件、专有硬件、网络的深度配合,来满足上层应用的极致性能需求。智能管理传统数据中心多采用中心管控、集中运维的方式,故障定位多依赖专家的经验,随着存储集群规模的增大和新技术的发展,这一模式运行的成本越来越高。各主流厂商纷纷推出“AI in Storage”的概念,利用云上云下技术结合,实现存储的智能管理。云下数据中心,以服务化的方式统一管理不同存储设备,实现资源的自动化分配和数据在线流动,简化业务发放;云下设备侧,内嵌AI能力学习用户的操作习惯和IO模型,和云上模型库匹配实现性能自动优化。云上统一运维侧,分析云下海量设备的容量和性能增长的共性规律,实现容量和性能风险提前预测;分析云下设备的故障处理共性规律,提供故障预测能力及自动处理方案。小结随着Cloud和AI时代的数据爆发式增长,分布式存储的春天已经到来,用户已经越来越多的选择分布式存储。通过协议互通、EC、重删压缩、高密等技术达成极致效率是分布式存储的核心竞争力;软硬件深度配合,云上云下协同,实现极致性能和智能管理成为分布式存储发展的重要趋势。