动态规划入门——经典的完全背包与多重背包问题
Posted TechFlow
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了动态规划入门——经典的完全背包与多重背包问题相关的知识,希望对你有一定的参考价值。
今天是算法数据结构专题的第13篇文章,也是动态规划专题的第二篇。
上一讲当中我们一起学习了动态规划算法中的零一背包问题,我们知道了所谓的零一背包是指每一种物品只有一个,所以它的状态只有0和1两种,即拿或者不拿。而今天我们要来讨论物品不止有一个的情况,物品不止有一个也分两种,一种是不作任何限制,要多少有多少,这种称为完全背包问题,另一种是依然有个数限制,这种称为多重背包问题。
我们一个一个来看,我们先从其中比较简单的完全背包开始。由于我们这是一个连续的专题,没有看过上篇文章或者是新关注的同学可以移步我们专题的第一篇:
完全背包
在之前的文章当中,我们阐述了动态规划当中状态和决策以及状态转移的相关概念。在背包问题当中,背包的容量是状态,而选择哪个物品进行获取则是决策,当我们制定了一个决策之后,背包会从一个状态转移到另一个状态。而动态规划算法就是枚举所有状态和决策,获得所有的状态转移,并且记录这个过程中每个状态能够获得的最优解。
在之前的文章当中,我们先遍历了所有的决策,然后再枚举了所有的状态,计算在决策下进行转移之后得到的结果。在之前的零一背包问题当中,由于我们每个物品只能获取一个,如果在前面的状态执行了决策,那么后面的状态则不能进行相同的决策。这也就是动态规划的后效性,而在完全背包问题当中,我们去掉了这个限制,也就意味着决策之间不再有后效性,一个决策可以重复应用在各个状态当中。
所以如果你能理解上面这段话,那么整个算法其实非常简单,几乎就是零一背包的代码。只不过我们把其中倒叙遍历的背包状态再”修正“回来。
之前我们为了避免物品的重复获取,所以采用了倒叙遍历的方法,如今我们不再对数量进行限制,意味着我们可以自由地采取决策进行转移。要做到这点,其他的代码都不用修改,只需要将第二重循环枚举的状态,再换成从0开始的正向遍历即可。
dp = [0 for _ in range(11)]
items = [[6, 10], [5, 8], [5, 9]]
# 遍历物品
for v, w in items:
# 遍历背包空间(状态)
# 更新vp+v的状态,即当前容量放入物品之后的状态
for vp in range(0, 10-v+1):
dp[vp+v] = max(dp[vp+v], dp[vp] + w)
print(max(dp]))
如果你还没能完全理解其中的逻辑,我们可以对照一下代码再来理解一下。在第一种循环当中,我们遍历了所有的物品,每一个物品对应了一种决策。每一个决策可以应用在各个状态上。
比如第一个物品是6, 15,代表它的体积是6,价值是15。那么我们遍历所有能够应用这个决策的状态,也就是在不超过背包容量的情况下能够放下的状态。显然对于一个体积是6的物品来说,只有0到4的状态可以放下。比如说我们选择状态2,状态2放下了这个物品之后,自然会转移到状态8,因为体积增加了6。有可能这个决策会使得状态8获得更好的结果,也有可能不会,如果会的话我们就更新一下状态8记录的值。这个从一个状态采取决策到另一个状态的过程就是状态转移。
完全背包就是零一背包的无限制版,从原理上来说,两者的思路和做法基本上是一样的。如果你能理解零一背包,那么完全背包对你来说也一定不在话下。
细小的优化
在完全背包当中,由于所有的物品都可以无限获取。所以我们可以引入一些零一背包不能进行的优化,比如对于同样体积的物品而言,我们可以只保留价值最高的物品,将其他的物品过滤掉。这个思路很朴素,我想大家应该都能理解。
比如两个物品体积都是3,一个价值是4,另一个价值是3,我们完全可以忽略价值是3的那一种。因为两者带来的状态转移是一样的,但是明显前者收益更好。而这个优化在零一背包当中不可行是因为每个物品只有一个,很有可能会出现两者都要的情况。在完全背包当中则没有这个问题。
多重背包
和零一背包以及完全背包相比,多重背包要难上一些,它的解法也非常多样。我们今天先来看一个相对比较简单的方法。
同样,我们从最简单的方法开始讲起。最简单的方法当然就是将多重背包蜕化成零一背包来解决,比如一个物品最多可以拿N个,我们就把它拆成N个物品,这样每个物品最多拿一个,相当于我们可以最多拿N个。这个思路应该很简单,大家都能想明白,但是有个很大的问题,就是复杂度。当然我们可以根据背包的体积做一些优化,比如当物品的数量很多并且超过了背包容量的时候,我们可以把超过容量的数量去掉,但是整体的复杂度还是很高。尤其是当我们背包容量很大的时候。
那么,我们怎么来解决这个问题呢?
这里要介绍一个比较通用的算法,这个算法可以用来优化很多问题,也是很多算法的思想。它就是二进制表示法。这个方法我们在之前的文章当中曾经讲到过,思想非常简单,但是非常实用。
二进制表示法
所谓二进制表示法就是将一个int类型的数表示成二进制,整个算法的思想就是这一句话,所以我想大家应该都能理解。但是我们为什么要将一个int转成二进制,以及转成二进制之后怎么样来优化算法,这个才是我们想知道的,也才是算法的核心重点,不要着急,我们一点点来说明。
我们都知道在计算机系统当中都是以二进制存储的所有数据,最典型的就是整数。一个32位的int,可以表示最大21亿的整数。这个都是我们已知的,但是换一个角度来看,一个21亿的数最后用32个二进制位就表示了,其实非常惊人。为什么说二进制是一个非常伟大的思想?不在于它难,而在于它高效地压缩了数据。
def binary_divide(cnt, volume, price):
divides = []
for i in range(32):
# 从0位开始枚举
cur = 1 << i
# 如果小于枚举值,说明已经拆分完毕了
if cnt < cur:
# 把剩下的部分打包
divides.append((cnt, cnt * volume, cnt * price))
break
else:
# 否则继续拆分,打包1 << i个物品
cnt -= cur
divides.append((cur, cur * volume, cur * price))
return divides
# 物品,分别是数量,体积和单位价格
items = [(10, 3, 5), (5, 6, 3), (2, 2, 4)]
volume = 20
dp = [0 for _ in range(volume+1)]
new_items = []
for i in items:
# 二进制拆分
new_items.extend(binary_divide(*i))
for item in new_items:
v, p = item[1], item[2]
for i in range(volume-v, -1, -1):
dp[i + v] = max(dp[i+v], dp[i] + p)
print(dp[20])
以上是关于动态规划入门——经典的完全背包与多重背包问题的主要内容,如果未能解决你的问题,请参考以下文章
动态规划背包问题总结:01完全多重与其二进制优化分组背包 题解与模板