R语言stan泊松回归Poisson regression
Posted 拓端数据部落
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言stan泊松回归Poisson regression相关的知识,希望对你有一定的参考价值。
原文链接:http://tecdat.cn/?p=6560
读取数据
summary(eba1977)
## city age pop cases
## Fredericia:6 40-54:4 Min. : 509.0 Min. : 2.000
## Horsens :6 55-59:4 1st Qu.: 628.0 1st Qu.: 7.000
## Kolding :6 60-64:4 Median : 791.0 Median :10.000
## Vejle :6 65-69:4 Mean :1100.3 Mean : 9.333
## 70-74:4 3rd Qu.: 954.8 3rd Qu.:11.000
## 75+ :4 Max. :3142.0 Max. :15.000
普通 Poisson model
glm1 <- glm(formula = cases ~ age + city + offset(log(pop)),
family = poisson(link = "log"),
data = eba1977)
summary(glm1)
#
# Call:
# glm(formula = cases ~ age + city + offset(log(pop)), family = poisson(link = "log"),
# data = eba1977)
#
# Deviance Residuals:
# Min 1Q Median 3Q Max
# -2.63573 -0.67296 -0.03436 0.37258 1.85267
#
# Coefficients:
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) -5.6321 0.2003 -28.125 < 2e-16 ***
# age55-59 1.1010 0.2483 4.434 9.23e-06 ***
# age60-64 1.5186 0.2316 6.556 5.53e-11 ***
# age65-69 1.7677 0.2294 7.704 1.31e-14 ***
# age70-74 1.8569 0.2353 7.891 3.00e-15 ***
# age75+ 1.4197 0.2503 5.672 1.41e-08 ***
# cityHorsens -0.3301 0.1815 -1.818 0.0690 .
# cityKolding -0.3715 0.1878 -1.978 0.0479 *
# cityVejle -0.2723 0.1879 -1.450 0.1472
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
# (Dispersion parameter for poisson family taken to be 1)
#
# Null deviance: 129.908 on 23 degrees of freedom
# Residual deviance: 23.447 on 15 degrees of freedom
# AIC: 137.84
#
# Number of Fisher Scoring iterations: 5
Stan
数据
模型矩阵
modMat <- as.data.frame(model.matrix(glm1))
log(eba1977$pop) offset <-
names(modMat) <- c("intercept", "age55_59", "age60_64", "age65_69", "age70_74",
"age75plus", "cityHorsens", "cityKolding", "cityVejle", "offset")
dat <- as.list(modMat)
$cases y <- eba1977
N <- nrow(modMat)
p <- ncol(modMat) - 1
# Load Stan file
fileName <- "./poisson.stan"
stan_code <- readChar(fileName, file.info(fileName)$size)
cat(stan_code)
# Run Stan
resStan <- stan(model_code = stan_code, data = dat,
chains = 3, iter = 3000, warmup = 500, thin = 10)
#
# TRANSLATING MODEL 'stan_code' FROM Stan CODE TO C++ CODE NOW.
# COMPILING THE C++ CODE FOR MODEL 'stan_code' NOW.
# In file included from file60814bc1cb78.cpp:8:
# In file included from /Library/Frameworks/R.framework/Versions/3.1/Resources/library/rstan/include//stansrc/stan/model/model_header.hpp:17:
# In file included from /Library/Frameworks/R.framework/Versions/3.1/Resources/library/rstan/include//stansrc/stan/agrad/rev.hpp:5:
# /Library/Frameworks/R.framework/Versions/3.1/Resources/library/rstan/include//stansrc/stan/agrad/rev/chainable.hpp:87:17: warning: 'static' function 'set_zero_all_adjoints' declared in header file should be declared 'static inline' [-Wunneeded-internal-declaration]
# static void set_zero_all_adjoints() {
# ^
# In file included from file60814bc1cb78.cpp:8:
# In file included from /Library/Frameworks/R.framework/Versions/3.1/Resources/library/rstan/include//stansrc/stan/model/model_header.hpp:21:
# /Library/Frameworks/R.framework/Versions/3.1/Resources/library/rstan/include//stansrc/stan/io/dump.hpp:26:14: warning: function 'product' is not needed and will not be emitted [-Wunneeded-internal-declaration]
# size_t product(std::vector<size_t> dims) {
# ^
#
##
# SAMPLING FOR MODEL 'stan_code' NOW (CHAIN 1).
#
# Iteration: 1 / 3000 [ 0%] (Warmup)
# Iteration: 300 / 3000 [ 10%] (Warmup)
# Iteration: 501 / 3000 [ 16%] (Sampling)
# Iteration: 800 / 3000 [ 26%] (Sampling)
# Iteration: 1100 / 3000 [ 36%] (Sampling)
# Iteration: 1400 / 3000 [ 46%] (Sampling)
# Iteration: 1700 / 3000 [ 56%] (Sampling)
# Iteration: 2000 / 3000 [ 66%] (Sampling)
# Iteration: 2300 / 3000 [ 76%] (Sampling)
# Iteration: 2600 / 3000 [ 86%] (Sampling)
# Iteration: 2900 / 3000 [ 96%] (Sampling)
# Iteration: 3000 / 3000 [100%] (Sampling)
# # Elapsed Time: 0.142295 seconds (Warm-up)
# # 0.543612 seconds (Sampling)
# # 0.685907 seconds (Total)
#
#
# SAMPLING FOR MODEL 'stan_code' NOW (CHAIN 2).
#
# Iteration: 1 / 3000 [ 0%] (Warmup)
# Iteration: 300 / 3000 [ 10%] (Warmup)
# Iteration: 501 / 3000 [ 16%] (Sampling)
# Iteration: 800 / 3000 [ 26%] (Sampling)
# Iteration: 1100 / 3000 [ 36%] (Sampling)
# Iteration: 1400 / 3000 [ 46%] (Sampling)
# Iteration: 1700 / 3000 [ 56%] (Sampling)
# Iteration: 2000 / 3000 [ 66%] (Sampling)
# Iteration: 2300 / 3000 [ 76%] (Sampling)
# Iteration: 2600 / 3000 [ 86%] (Sampling)
# Iteration: 2900 / 3000 [ 96%] (Sampling)
# Iteration: 3000 / 3000 [100%] (Sampling)
# # Elapsed Time: 0.13526 seconds (Warm-up)
# # 0.517139 seconds (Sampling)
# # 0.652399 seconds (Total)
#
#
# SAMPLING FOR MODEL 'stan_code' NOW (CHAIN 3).
#
# Iteration: 1 / 3000 [ 0%] (Warmup)
# Iteration: 300 / 3000 [ 10%] (Warmup)
# Iteration: 501 / 3000 [ 16%] (Sampling)
# Iteration: 800 / 3000 [ 26%] (Sampling)
# Iteration: 1100 / 3000 [ 36%] (Sampling)
# Iteration: 1400 / 3000 [ 46%] (Sampling)
# Iteration: 1700 / 3000 [ 56%] (Sampling)
# Iteration: 2000 / 3000 [ 66%] (Sampling)
# Iteration: 2300 / 3000 [ 76%] (Sampling)
# Iteration: 2600 / 3000 [ 86%] (Sampling)
# Iteration: 2900 / 3000 [ 96%] (Sampling)
# Iteration: 3000 / 3000 [100%] (Sampling)
# # Elapsed Time: 0.120931 seconds (Warm-up)
# # 0.509901 seconds (Sampling)
# # 0.630832 seconds (Total)
# 绘制路径图
traceplot(resStan, pars = c("beta"), inc_warmup = TRUE)
比较
# 频率
tableone::ShowRegTable(glm1, exp = FALSE)
# beta [confint] p
# (Intercept) -5.63 [-6.04, -5.26] <0.001
# age55-59 1.10 [0.61, 1.59] <0.001
# age60-64 1.52 [1.07, 1.98] <0.001
# age65-69 1.77 [1.32, 2.22] <0.001
# age70-74 1.86 [1.40, 2.32] <0.001
# age75+ 1.42 [0.93, 1.91] <0.001
# cityHorsens -0.33 [-0.69, 0.03] 0.069
# cityKolding -0.37 [-0.74, -0.00] 0.048
# cityVejle -0.27 [-0.64, 0.09] 0.147
# 贝叶斯
print(resStan, pars = c("beta"))
## Inference for Stan model: stan_code.
# 3 chains, each with iter=3000; warmup=500; thin=10;
# post-warmup draws per chain=250, total post-warmup draws=750.
#
# mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
# beta[1] -5.66 0.01 0.21 -6.13 -5.80 -5.64 -5.51 -5.29 655 1
# beta[2] 1.11 0.01 0.25 0.60 0.95 1.11 1.28 1.60 750 1
# beta[3] 1.53 0.01 0.23 1.10 1.38 1.51 1.68 2.00 750 1
# beta[4] 1.77 0.01 0.25 1.30 1.60 1.76 1.94 2.24 750 1
# beta[5] 1.87 0.01 0.24 1.40 1.71 1.86 2.02 2.37 750 1
# beta[6] 1.42 0.01 0.25 0.94 1.25 1.42 1.58 1.95 631 1
# beta[7] -0.33 0.01 0.18 -0.69 -0.45 -0.32 -0.21 0.03 703 1
# beta[8] -0.37 0.01 0.19 -0.74 -0.50 -0.38 -0.24 -0.01 664 1
# beta[9] -0.28 0.01 0.19 -0.66 -0.40 -0.27 -0.15 0.09 698 1
#
# Samples were drawn using NUTS(diag_e) at Mon Apr 13 21:43:02 2015.
# For each parameter, n_eff is a crude measure of effective sample size,
# and Rhat is the potential scale reduction factor on split chains (at
# convergence, Rhat=1).
非常感谢您阅读本文,有任何问题请在下方留言!
点击标题查阅往期内容
更多内容,请点击左下角“阅读原文”查看
案例精选、技术干货 第一时间与您分享
长按二维码加关注
更多内容,请点击左下角“阅读原文”查看
以上是关于R语言stan泊松回归Poisson regression的主要内容,如果未能解决你的问题,请参考以下文章
R语言构建xgboost模型:使用xgboost构建泊松回归(poisson regression)模型
R语言广义线性模型泊松回归(Poisson Regression)模型
R语言广义线性模型函数GLMglm函数构建泊松回归模型(Poisson regression)泊松回归模型系数解读查看系数的乘法效应(Interpreting the model para)
R语言广义线性模型函数GLMglm函数构建泊松回归模型(Poisson regression)输出提供偏差(deviances)回归参数和标准误差以及系数的显著性p值
R语言广义线性模型函数GLMglm函数构建泊松回归模型(Poisson regression)分析模型是否过离散(Overdispersion)使用残差偏差与模型中的剩余自由度的比率值评估