R语言混合时间模型预测对时间序列进行点估计

Posted 拓端数据部落

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言混合时间模型预测对时间序列进行点估计相关的知识,希望对你有一定的参考价值。

原文连接:http://tecdat.cn/?p=6078



混合预测 - 单模型预测的平均值 - 通常用于产生比任何预测模型更好的点估计。我展示了如何为混合预测构建预测区间,这种预测的覆盖范围比最常用的预测区间更准确(即80%的实际观测结果确实在80%置信区间内)。

 

预测间隔

预报员的问题是在预测组合中使用的预测间隔。预测间隔是与置信区间相似但不相同的概念。预测间隔是对尚未知但将在未来的某个点观察到的值(或更确切地说,可能值的范围)的估计。而置信区间是对基本上不可观察的参数的可能值范围的估计。预测间隔需要考虑模型中的不确定性,模型中参数的不确定估计(即那些参数的置信区间),以及与预测的特定点相关联的个体随机性。


介绍

结合auto.arima()ets(),有效地进行混合预测。为了使更方便,我创建了一个hybridf()在R中为我做这个并生成类对象的函数forecast



深灰色区域是80%预测区间,浅灰色区域是95%预测区间。 


测试M3

结果如下:

变量 准确度
ets_p80 0.75
ets_p95 0.90
auto.arima_p80 0.74
auto.arima_p95 0.88
hybrid_p80 0.83
hybrid_p95 0.94

我的混合方法有在接近广告的成功率,而这两个预测区间ets()auto.arima()不太成功。

以下是我在M3数据上测试的方法。我构建了一个小函数pi_accuracy()来帮助,它利用了类预测对象返回一个名为“lower”的矩阵和另一个名为“upper”的矩阵,每个预测区间级别都有一列。

 
#------------------setup------------------------
library(forecast) ly = "myfont"))
pi_accuracy <- function(fc, yobs){ # checks the success of prediction intervals of an object of class In <- (yobsm }

实际上拟合所有预测相对简单。我的笔记本电脑花了大约一个小时。



num_series <- length(M3) # ie 3003results <- matrix(0, nrow = num_series, ncol = 7)
for(i in 1:num_series){ cat(i, " ") # let me know how it's going as it loops through... series <- M3[[i]] ccess fc1 <- fc3$fc_ets r geom_smooth(se = FALSE, method = "lm") + theme(panel.grid.minor = element_blank())

R语言混合时间模型预测对时间序列进行点估计


预测


变量 准确度
ets_p80 0.72
ets_p95 0.88
auto.arima_p80 0.70
auto.arima_p95 0.86
hybrid_p80 0.80
hybrid_p95 0.92
 
#===== bootstrapping =============
num_series <- length(M3)resultsb <- matrix(0, nrow = num_series, ncol = 7)
for(i in 1:num_series){ cat(i, " ") gather(variable, value, -h) %>% mutate(weighted_val ighted_value) / sum(h), 2))

结论


  • 根据M3竞赛数据进行测试,通过组合ets()auto.arima()形成的预测到期望的水平,即80%预测interval在80%的时间内包含真值,95%的预测间隔包含不到95%的时间的真值。


点击标题查阅往期内容










更多内容,请点击左下角“阅读原文”查看

R语言混合时间模型预测对时间序列进行点估计

R语言混合时间模型预测对时间序列进行点估计

R语言混合时间模型预测对时间序列进行点估计


案例精选、技术干货 第一时间与您分享

长按二维码加关注

更多内容,请点击左下角“阅读原文”查看


以上是关于R语言混合时间模型预测对时间序列进行点估计的主要内容,如果未能解决你的问题,请参考以下文章

R语言构建多元线性回归模型

earch模型结果怎么看

r语言arma-garch怎样预测

R语言随机森林: 多元时间序列构造股票市场收益预测模型|预测模型

在 R 中使用 Fable 进行时间序列预测;确定混合模型的最佳模型组合

数据分享|R语言零膨胀泊松回归ZERO-INFLATED POISSON(ZIP)模型分析露营钓鱼数据实例估计IRR和OR|附代码数据