R语言实现CNN(卷积神经网络)模型进行回归数据分析
Posted 拓端数据部落
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言实现CNN(卷积神经网络)模型进行回归数据分析相关的知识,希望对你有一定的参考价值。
原文链接:http://tecdat.cn/?p=18149
当我们将CNN(卷积神经网络)模型用于训练多维类型的数据(例如图像)时,它们非常有用。我们还可以实现CNN模型进行回归数据分析。我们之前使用Python进行CNN模型回归 ,在本文中,我们在R中实现相同的方法。
我们使用一维卷积函数来应用CNN模型。我们需要Keras R接口才能在R中使用Keras神经网络API。如果开发环境中不可用,则需要先安装。本教程涵盖:
准备数据
定义和拟合模型
预测和可视化结果
源代码
我们从加载本教程所需的库开始。
library(keras)
library(caret)
准备
数据在本教程中,我们将波士顿住房数据集用作目标回归数据。首先,我们将加载数据集并将其分为训练和测试集。
set.seed(123)
boston = MASS::Boston
indexes = createDataPartition(boston$medv, p = .85, list = F)
train = boston[indexes,]
test = boston[-indexes,]
接下来,我们将训练数据和测试数据的x输入和y输出部分分开,并将它们转换为矩阵类型。您可能知道,“ medv”是波士顿住房数据集中的y数据输出,它是其中的最后一列。其余列是x输入数据。
检查维度。
dim(xtrain)
[432 13 ]
dim(ytrain)
[432 1 ]
接下来,我们将通过添加另一维度来重新定义x输入数据的形状。
dim(xtrain)
[432 13 1 ]
dim(xtest)
[74 13 1 ]
在这里,我们可以提取keras模型的输入维。
print(in_dim)
[1] 13 1
定义和拟合模型
我们定义Keras模型,添加一维卷积层。输入形状变为上面定义的(13,1)。我们添加Flatten和Dense层,并使用“ Adam”优化器对其进行编译。
model %>% summary()
________________________________________________________________________
Layer (type) Output Shape Param #
========================================================================
conv1d_2 (Conv1D) (None, 12, 64) 192
________________________________________________________________________
flatten_2 (Flatten) (None, 768) 0
________________________________________________________________________
dense_3 (Dense) (None, 32) 24608
________________________________________________________________________
dense_4 (Dense) (None, 1) 33
========================================================================
Total params: 24,833
Trainable params: 24,833
Non-trainable params: 0
________________________________________________________________________
接下来,我们将使用训练数据对模型进行拟合。
print(scores)
loss
24.20518
预测和可视化结果
现在,我们可以使用训练的模型来预测测试数据。
predict(xtest)
我们将通过RMSE指标检查预测的准确性。
cat("RMSE:", RMSE(ytest, ypred))
RMSE: 4.935908
最后,我们将在图表中可视化结果检查误差。
x_axes = seq(1:length(ypred))
lines(x_axes, ypred, col = "red", type = "l", lwd = 2)
legend("topl
在本教程中,我们简要学习了如何使用R中的keras CNN模型拟合和预测回归数据。
点击标题查阅往期内容
更多内容,请点击左下角“阅读原文”查看报告全文
案例精选、技术干货 第一时间与您分享
长按二维码加关注
更多内容,请点击左下角“阅读原文”查看报告全文
以上是关于R语言实现CNN(卷积神经网络)模型进行回归数据分析的主要内容,如果未能解决你的问题,请参考以下文章
多层多输入的CNN-LSTM时间序列回归预测(卷积神经网络-长短期记忆网络)——附代码
CNN回归预测基于matlab卷积神经网络CNN数据回归预测含Matlab源码 2003期
CNN回归预测基于matlab卷积神经网络CNN数据回归预测含Matlab源码 2003期