师兄绝招 | 手把手教你R语言轻松搞定临床三线表

Posted 医科研

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了师兄绝招 | 手把手教你R语言轻松搞定临床三线表相关的知识,希望对你有一定的参考价值。

  • 按照流行病学和相关领域的标准做法是,期刊文章的第一张表格,我们通常称为“表1”,是一份表,列出按暴露程度分层的研究人群基线特征的描述性统计数据。这个包使得使用R生成这样一个表相当简单。输出格式是html(它的优点是很容易复制到Word文档中;Chrome浏览器工作得很好)。

  • 实际上这个包还能够对表格有更多定制的功能,但这样用起来爽是需要代价的,更多的代码与CSS知识

  • 官方文档参考资料(https://benjaminrich.github.io/table1/vignettes/table1-examples.html)

  • R包table1

if(!require(table1)) install.packages("table1",ask=F,update=F)
## Loading required package: table1
## Warning: package 'table1' was built under R version 3.6.1
#
## Attaching package: 'table1'
## The following objects are masked from 'package:base':
#
##     units, units<-
require(table1)

Example1

  • 使用boot包中的自带数据

  • melanoma数据集

library(boot) 
## Warning: package 'boot' was built under R version 3.6.1
melanoma2 <- melanoma
head(melanoma)
##   time status sex age year thickness ulcer
## 1   10      3   1  76 1972      6.76     1
## 2   30      3   1  56 1968      0.65     0
## 3   35      2   1  41 1977      1.34     0
## 4   99      3   0  71 1968      2.90     0
## 5  185      1   1  52 1965     12.08     1
## 6  204      1   1  28 1971      4.84     1
dim(melanoma)
## [1] 205   7
## input melanoma是一个数据框
## 对我们感兴趣的变量因子化
melanoma2$status <- 
  factor(melanoma2$status
         levels=c(2,1,3),
         labels=c("Alive"# 第一个作为参考组
                  "Melanoma death"
                  "Non-melanoma death"))

可以来绘制一个表格试试,意思就是以感兴趣的因子作为分类status,同理这个status可以是任意大家感兴趣的变量。

格式为~感兴趣的基线变量|感兴趣的分类变量,data

table1(~ factor(sex) + age + factor(ulcer) + thickness | status, data=melanoma2)
师兄绝招 | 手把手教你R语言轻松搞定临床三线表
image.png
  • 这样的表格已经可以了,但仍然可以改进

  • 基线分类变量sex,ulcer没有很好的label,基线的连续型变量可以指定单位units,下面来improve

## 给分类变量sex指定标签
melanoma2$sex <- 
  factor(melanoma2$sex, levels=c(1,0),
         labels=c("Male"
                  "Female"))
## 给分类变量ulcer指定标签
melanoma2$ulcer <- 
  factor(melanoma2$ulcer, levels=c(0,1),
         labels=c("Absent"
                  "Present"))
## 给变量名指定标签
label(melanoma2$sex)       <- "Sex"
label(melanoma2$age)       <- "Age"
label(melanoma2$ulcer)     <- "Ulceration"
label(melanoma2$thickness) <- "Thickness"

## 给连续型变量指定单位
units(melanoma2$age)       <- "years"
units(melanoma2$thickness) <- "mm"

## 再增加overall统计量
table1(~ sex + age + ulcer + thickness | status, data=melanoma2, overall="Total")
师兄绝招 | 手把手教你R语言轻松搞定临床三线表
image.png

细节控制

labels <- list(
    variables=list(sex="Sex",
                   age="Age (years)",
                   ulcer="Ulceration",
                   thickness="Thickness (mm)"),
    groups=list("""""Death"))##表格上的第一级Death

# 重新给status命名标签,death放到上面去
levels(melanoma2$status) <- c("Alive""Melanoma""Non-melanoma")
#按想要的顺序顺序设置分组或列,
#Total放第一列,split分开status
strata <- c(list(Total=melanoma2), split(melanoma2, melanoma2$status))

# 添加渲染风格-连续型变量与分类变量展示不同
# 连续型渲染风格函数
my.render.cont <- function(x) {
    with(stats.apply.rounding(stats.default(x), digits=2), c("",
        "Mean (SD)"=sprintf("%s (&plusmn; %s)", MEAN, SD)))
}
# 分类变量渲染风格
my.render.cat <- function(x) {
    c("", sapply(stats.default(x), function(y) with(y,
        sprintf("%d (%0.0f %%)", FREQ, PCT))
))
}

## 结果
## groupsapn为分组的个数,1为Total, 1为Alive,以及2为Death
## 增加了Death的亚组
table1(strata, labels, groupspan=c(112),
       render.continuous=my.render.cont, render.categorical=my.render.cat)

师兄绝招 | 手把手教你R语言轻松搞定临床三线表
image.png

Example2

  • 自己模拟一个数据

  • 函数式编程

  • …把其余参数全部传递,…的参数传递到了sample函数

f <- function(x, n, ...) factor(sample(x, n, replace=T, ...), levels=x)
set.seed(427)

## 构造数据框
n <- 146
dat <- data.frame(id=1:n)
dat$treat <- f(c("Placebo""Treated"), n, prob=c(1, 2)) # 2:1 randomization
dat$age   <- sample(18:65, n, replace=TRUE)
dat$sex   <- f(c("Female""Male"), n, prob=c(.6, .4))  # 60% female
dat$wt    <- round(exp(rnorm(n, log(70), 0.23)), 1)
dat$wt[sample.int(n, 5)] <- NA## 加入一些缺失值
head(dat)
##   id   treat age    sex    wt
## 1  1 Treated  18 Female  62.6
## 2  2 Treated  50   Male  57.4
## 3  3 Treated  37   Male 104.6
## 4  4 Treated  25 Female  55.5
## 5  5 Placebo  60 Female  58.4
## 6  6 Treated  44 Female  41.9
  • 标签命名

  • 单位

## 分类变量
label(dat$age)   <- "Age"
label(dat$sex)   <- "Sex"
label(dat$wt)    <- "Weight"
label(dat$treat) <- "Treatment Group"

#
# 连续型变量
units(dat$age)   <- "years"
units(dat$wt)    <- "kg"

#
# 绘制默认表格
table1(~ age + sex + wt | treat, data=dat)
师兄绝招 | 手把手教你R语言轻松搞定临床三线表
image.png
  • 删除overall

table1(~ age + sex + wt | treat, data=dat, overall=F)
师兄绝招 | 手把手教你R语言轻松搞定临床三线表
image.png
  • 轻松进行多个变量分类,一键定制

table1(~ age + wt | treat*sex, data=dat)
师兄绝招 | 手把手教你R语言轻松搞定临床三线表
image.png
  • 改变顺序

table1(~ age + wt | treat*sex, data=dat)
师兄绝招 | 手把手教你R语言轻松搞定临床三线表
image.png
  • 无感兴趣变量统计表格

table1(~ treat + age + sex + wt, data=dat)
师兄绝招 | 手把手教你R语言轻松搞定临床三线表
image.png
  • 更复杂的定制

## 给原数据增加一个dose列
dat$dose <- (dat$treat != "Placebo")*sample(1:2, n, replace=T)

## 给dose加标签
dat$dose <- factor(dat$dose, labels=c("Placebo""5 mg""10 mg"))

## strata定制
## split指定按dose分亚组
strata <- c(split(dat, dat$dose), ##dose分组
            list("All treated"=subset(dat, treat=="Treated")), ## all treated组
            list(Overall=dat))## overall

labels <- list(
    variables=list(age=render.varlabel(dat$age),
                   sex=render.varlabel(dat$sex),
                   wt=render.varlabel(dat$wt)),
    groups=list("""Treated"""))## 一级分组标签

## groupspan二级分组告诉你标题栏的线包括几个变量
## 对应groups
table1(strata, labels, groupspan=c(131))
师兄绝招 | 手把手教你R语言轻松搞定临床三线表
image.png

显示不同变量的不同统计数据

例如下面的渲染风格

  • age展示Median

  • wt展示mean

rndr <- function(x, name, ...) {
    if (!is.numeric(x)) return(render.categorical.default(x))
    what <- switch(name,
        age = "Median [Min, Max]",
        wt  = "Mean (SD)")
    parse.abbrev.render.code(c("", what))(x)
}

table1(~ age + sex + wt | treat, data=dat,
       render=rndr)

改变表格的样式

内置了多个渲染风格

  • zebra: alternating shaded and unshaded rows (zebra stripes)

  • grid: show all grid lines

  • shade: shade the header row(s) in gray

  • times: use a serif font

  • center: center all columns, including the first which contains the row labels

## 更换表格风格,用topclass参数设置
## zebra似乎不错

table1(~ age + sex + wt | treat, data=dat, topclass="Rtable1-zebra")
image.png

增加一列pvalue

实际上这个功能本身是没有的,但是可以通过添加一个渲染来实现

library(MatchIt) 
## Warning: package 'MatchIt' was built under R version 3.6.1
data(lalonde)
head(lalonde)
##      treat age educ black hispan married nodegree re74 re75       re78
## NSW1     1  37   11     1      0       1        1    0    0  9930.0460
## NSW2     1  22    9     0      1       0        1    0    0  3595.8940
## NSW3     1  30   12     1      0       0        0    0    0 24909.4500
## NSW4     1  27   11     1      0       0        1    0    0  7506.1460
## NSW5     1  33    8     1      0       0        1    0    0   289.7899
## NSW6     1  22    9     1      0       0        1    0    0  4056.4940
## 分类变量
lalonde$treat    <- factor(lalonde$treat, levels=c(012), labels=c("Control""Treatment""P-value"))
lalonde$black    <- factor(lalonde$black)
lalonde$hispan   <- factor(lalonde$hispan)
lalonde$married  <- factor(lalonde$married)
lalonde$nodegree <- factor(lalonde$nodegree)
lalonde$black    <- as.logical(lalonde$black == 1)
lalonde$hispan   <- as.logical(lalonde$hispan == 1)
lalonde$married  <- as.logical(lalonde$married == 1)
lalonde$nodegree <- as.logical(lalonde$nodegree == 1)

##连续变量
label(lalonde$black)    <- "Black"
label(lalonde$hispan)   <- "Hispanic"
label(lalonde$married)  <- "Married"
label(lalonde$nodegree) <- "No high school diploma"
label(lalonde$age)      <- "Age"
label(lalonde$re74)     <- "1974 Income"
label(lalonde$re75)     <- "1975 Income"
label(lalonde$re78)     <- "1978 Income"
units(lalonde$age)      <- "years"

rndr <- function(x, name, ...) {
    if (length(x) == 0) {
        y <- lalonde[[name]]
        s <- rep("", length(render.default(x=y, name=name, ...)))
        if (is.numeric(y)) {
            p <- t.test(y ~ lalonde$treat)$p.value
        } else {
            p <- chisq.test(table(y, droplevels(lalonde$treat)))$p.value
        }
        s[2] <- sub("<""&lt;", format.pval(p, digits=3, eps=0.001))
        s
    } else {
        render.default(x=x, name=name, ...)
    }
}

rndr.strat <- function(label, n, ...) {
    ifelse(n==0, label, render.strat.default(label, n, ...))
}
## 绘图
table1(~ age + black + hispan + married + nodegree + re74 + re75 + re78 | treat,
    data=lalonde, droplevels=F, render=rndr, render.strat=rndr.strat, overall=F)


往期精彩合集

           |  |  | 

 |  | 

以上是关于师兄绝招 | 手把手教你R语言轻松搞定临床三线表的主要内容,如果未能解决你的问题,请参考以下文章

博士师兄手把手教你用R语言做PCA分析,不存在学不会!

R语言数据分析系列-临床三线表

bug难搞定?教你几招扼杀bug的绝招!

手把手教你搞定Java数据结构与算法

手把手教你学习R语言

R语言小白入门第一步,视频手把手教你如何安装R包