Paxos协议 | 分布式理论

Posted 老蒙大数据

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Paxos协议 | 分布式理论相关的知识,希望对你有一定的参考价值。

Paxos协议在节点宕机恢复、消息无序或丢失、网络分化的场景下能保证决议的一致性,是被讨论最广泛的一致性协议。

 

Paxos协议同时又以其“艰深晦涩”著称,下面结合 Paxos Made Simple、The Part-Time Parliament 两篇论文,尝试通过Paxos推演、学习和了解Paxos协议。

 

Basic Paxos

何为一致性问题?简单而言,一致性问题是在节点宕机、消息无序等场景可能出现的情况下,相互独立的节点之间如何达成决议的问题,作为解决一致性问题的协议,Paxos的核心是节点间如何确定并只确定一个值(value)。

 

也许你会疑惑只确定一个值能起什么作用,在Paxos协议里确定并只确定一个值是确定多值的基础,如何确定多值将在第二部分Multi Paxos中介绍,这部分我们聚焦在“Paxos如何确定并只确定一个值”这一问题上。

 

和2PC类似,Paxos先把节点分成两类,发起提议(proposal)的一方为proposer,参与决议的一方为acceptor。假如只有一个proposer发起提议,并且节点不宕机、消息不丢包,那么acceptor做到以下这点就可以确定一个值:

P1. 一个acceptor接受它收到的第一项提议

 

当然上面要求的前提条件有些严苛,节点不能宕机、消息不能丢包,还只能由一个proposer发起提议。我们尝试放宽条件,假设多个proposer可以同时发起提议,又怎样才能做到确定并只确定一个值呢?

 

首先proposer和acceptor需要满足以下两个条件:

1. proposer发起的每项提议分别用一个ID标识,提议的组成因此变为(ID, value)

2. acceptor可以接受(accept)不止一项提议,当多数(quorum) acceptor接受一项提议时该提议被确定(chosen)

(注: 注意以上“接受”和“确定”的区别)

 

我们约定后面发起的提议的ID比前面提议的ID大,并假设可以有多项提议被确定,为做到确定并只确定一个值acceptor要做到以下这点:

P2. 如果一项值为v的提议被确定,那么后续只确定值为v的提议

(注: 乍看这个条件不太好理解,谨记目标是“确定并只确定一个值”)

 

由于一项提议被确定(chosen)前必须先被多数派acceptor接受(accepted),为实现P2,实质上acceptor需要做到:

P2a. 如果一项值为v的提议被确定,那么acceptor后续只接受值为v的提议

满足P2a则P2成立 (P2a => P2)。

 

目前在多个proposer可以同时发起提议的情况下,满足P1、P2a即能做到确定并只确定一个值。如果再加上节点宕机恢复、消息丢包的考量呢?

 

假设acceptor c 宕机一段时间后恢复,c 宕机期间其他acceptor已经确定了一项值为v的决议但c 因为宕机并不知晓;c 恢复后如果有proposer马上发起一项值不是v的提议,由于条件P1,c 会接受该提议,这与P2a矛盾。为了避免这样的情况出现,进一步地我们对proposer作约束:

P2b. 如果一项值为v的提议被确定,那么proposer后续只发起值为v的提议

满足P2b则P2a成立 (P2b => P2a => P2)。

 

P2b约束的是提议被确定(chosen)后proposer的行为,我们更关心提议被确定前proposer应该怎么做:

P2c. 对于提议(n,v),acceptor的多数派S中,如果存在acceptor最近一次(即ID值最大)接受的提议的值为v',那么要求v = v';否则v可为任意值

满足P2c则P2b成立 (P2c => P2b => P2a => P2)。

 

条件P2c是Basic Paxos的核心,光看P2c的描述可能会觉得一头雾水,我们通过 The Part-Time Parliament 中的例子加深理解:

Paxos协议 | 分布式理论

 

假设有A~E 5个acceptor,- 表示acceptor因宕机等原因缺席当次决议,x 表示acceptor不接受提议,o 表示接受提议;多数派acceptor接受提议后提议被确定,以上表格对应的决议过程如下:

  1. ID为2的提议最早提出,根据P2c其提议值可为任意值,这里假设为a

  2. acceptor A/B/C/E 在之前的决议中没有接受(accept)任何提议,因而ID为5的提议的值也可以为任意值,这里假设为b

  3. acceptor B/D/E,其中D曾接受ID为2的提议,根据P2c,该轮ID为14的提议的值必须与ID为2的提议的值相同,为a

  4. acceptor A/C/D,其中D曾接受ID为2的提议、C曾接受ID为5的提议,相比之下ID 5较ID 2大,根据P2c,该轮ID为27的提议的值必须与ID为5的提议的值相同,为b;该轮决议被多数派acceptor接受,因此该轮决议得以确定

  5. acceptor B/C/D,3个acceptor之前都接受过提议,相比之下C、D曾接受的ID 27的ID号最大,该轮ID为29的提议的值必须与ID为27的提议的值相同,为b

 

以上提到的各项约束条件可以归纳为3点,如果proposer/acceptor满足下面3点,那么在少数节点宕机、网络分化隔离的情况下,在“确定并只确定一个值”这件事情上可以保证一致性(consistency):

  • B1(ß): ß中每一轮决议都有唯一的ID标识

  • B2(ß): 如果决议B被acceptor多数派接受,则确定决议B

  • B3(ß): 对于ß中的任意提议B(n,v),acceptor的多数派中如果存在acceptor最近一次(即ID值最大)接受的提议的值为v',那么要求v = v';否则v可为任意值

(注: 希腊字母ß表示多轮决议的集合,字母B表示一轮决议)

 

另外为保证P2c,我们对acceptor作两个要求:

1. 记录曾接受的ID最大的提议,因proposer需要问询该信息以决定提议值

2. 在回应提议ID为n的proposer自己曾接受过ID最大的提议时,acceptor同时保证(promise)不再接受ID小于n的提议

 

至此,proposer/acceptor完成一轮决议可归纳为prepare和accept两个阶段。prepare阶段proposer发起提议问询提议值、acceptor回应问询并进行promise;accept阶段完成决议,图示如下:

Paxos协议 | 分布式理论

 

还有一个问题需要考量,假如proposer A发起ID为n的提议,在提议未完成前proposer B又发起ID为n+1的提议,在n+1提议未完成前proposer C又发起ID为n+2的提议…… 如此acceptor不能完成决议、形成活锁(livelock),虽然这不影响一致性,但我们一般不想让这样的情况发生。解决的方法是从proposer中选出一个leader,提议统一由leader发起。

 

最后我们再引入一个新的角色:learner,learner依附于acceptor,用于习得已确定的决议。以上决议过程都只要求acceptor多数派参与,而我们希望尽量所有acceptor的状态一致。如果部分acceptor因宕机等原因未知晓已确定决议,宕机恢复后可经本机learner采用pull的方式从其他acceptor习得。

 

Multi Paxos

通过以上步骤分布式系统已经能确定一个值,“只确定一个值有什么用?这可解决不了我面临的问题。” 你心中可能有这样的疑问。

Paxos协议 | 分布式理论

 

其实不断地进行“确定一个值”的过程、再为每个过程编上序号,就能得到具有全序关系(total order)的系列值,进而能应用在数据库副本存储等很多场景。我们把单次“确定一个值”的过程称为实例(instance),它由proposer/acceptor/learner组成,下图说明了A/B/C三机上的实例:

Paxos协议 | 分布式理论

不同序号的实例之间互相不影响,A/B/C三机输入相同、过程实质等同于执行相同序列的状态机(state machine)指令 ,因而将得到一致的结果。

 

proposer leader在Multi Paxos中还有助于提升性能,常态下统一由leader发起提议,可节省prepare步骤(leader不用问询acceptor曾接受过的ID最大的提议、只有leader提议也不需要acceptor进行promise)直至发生leader宕机、重新选主。

 

小结

以上介绍了Paxos的推演过程、如何在Basic Paxos的基础上通过状态机构建Multi Paxos。Paxos协议比较“艰深晦涩”,但多读几遍论文一般能理解其内涵,更难的是如何将Paxos真正应用到工程实践。


来源:https://www.cnblogs.com/bangerlee/p/5268485.html




- END -

智能人工推荐:


Paxos协议 | 分布式理论

  




以上是关于Paxos协议 | 分布式理论的主要内容,如果未能解决你的问题,请参考以下文章

分布式系统理论进阶 - RaftZab

Paxos与Zookeeper分布式一致性面试必备

zk分布式实现理论,Paxos算法,ZAB协议,CAP定理

微信分布式数据存储协议对比——Paxos和Quorum

分布式理论系列2PC 到 3PC 到 Paxos 到 Raft 到 Zab

分布式理论 - 一致性协议Raft