文本挖掘和情感分析的基础示例
Posted ATYUN订阅号
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了文本挖掘和情感分析的基础示例相关的知识,希望对你有一定的参考价值。
经过研究表明,在旅行者的决策过程中,TripAdvisor(猫途鹰,全球旅游点评网)正变得越来越重要。然而,了解TripAdvisor评分与数千个评论文本中的每一个的细微差别是很有挑战性的。为了更彻底地了解酒店客人的评论是否会影响酒店的加班表现,我从TripAdvisor截取了一家酒店 – 希尔顿夏威夷度假村(Hilton Hawaiian Village)的所有英语评论 (Web抓取的细节和Python代码在文末)。
加载库
18 |
theme_set(theme_minimal()) |
数据
1 |
df <- read_csv("Hilton_Hawaiian_Village_Waikiki_Beach_Resort-Honolulu_Oahu_Hawaii__en.csv") |
2 |
df <- df[complete.cases(df), ] |
3 |
df$review_date <- as.Date(df$review_date, format = "%d-%B-%y") |
4 |
dim(df); min(df$review_date); max(df$review_date) |
在TripAdvisor上希尔顿夏威夷度假村共有13,701条评论,评论日期范围是2002-03-21到2018-08-02。
2 |
count(Week = round_date(review_date, "week")) %>% |
5 |
ggtitle('The Number of Reviews Per Week') |
2014年底收到的每周评论数量最多。该酒店在那一周收到了70多条评论。
评论文本的文本挖掘
01 |
df <- tibble::rowid_to_column(df, "ID") |
03 |
mutate(review_date = as.POSIXct(review_date, origin = "1970-01-01"),month = round_date(review_date, "month")) |
04 |
review_words <- df %>% |
05 |
distinct(review_body, .keep_all = TRUE) %>% |
06 |
unnest_tokens(word, review_body, drop = FALSE) %>% |
07 |
distinct(ID, word, .keep_all = TRUE) %>% |
08 |
anti_join(stop_words, by = "word") %>% |
09 |
filter(str_detect(word, "[^\d]")) %>% |
11 |
mutate(word_total = n()) %>% |
13 |
word_counts <- review_words %>% |
14 |
count(word, sort = TRUE) |
17 |
mutate(word = reorder(word, n)) %>% |
18 |
ggplot(aes(word, n)) + |
19 |
geom_col(fill = "lightblue") + |
20 |
scale_y_continuous(labels = comma_format()) + |
22 |
labs(title = "Most common words in review text 2002 to date", |
23 |
subtitle = "Among 13,701 reviews; stop words removed", |
我们肯定可以做得更好一些,将“stay ”和“stayed ”,“pool”和“pools ”合起来。这被称为词干,词干是将变形(或有时是衍生)的词语变回到词干,基词或根词格式的过程。
03 |
mutate(word = wordStem(word)) %>% |
04 |
mutate(word = reorder(word, n)) %>% |
05 |
ggplot(aes(word, n)) + |
06 |
geom_col(fill = "lightblue") + |
07 |
scale_y_continuous(labels = comma_format()) + |
09 |
labs(title = "Most common words in review text 2002 to date", |
10 |
subtitle = "Among 13,701 reviews; stop words removed and stemmed", |
BIGRAM
我们经常想要了解评论中单词之间的关系。在评论文本中,有哪些常见的单词序列?给定一些单词,哪些单词最有可能跟随在这个单词后面?哪些词关联最紧密?因此,许多有趣的文本分析都是基于这种关联。当我们检查两个连续单词的对时,它被称为“bigram”(二元语法)。
那么,这家酒店的评论中最常见的bigram评论是什么?
01 |
review_bigrams <- df %>% |
02 |
unnest_tokens(bigram, review_body, token = "ngrams", n = 2) |
03 |
bigrams_separated <- review_bigrams %>% |
04 |
separate(bigram, c("word1", "word2"), sep = " ") |
05 |
bigrams_filtered <- bigrams_separated %>% |
06 |
filter(!word1 %in% stop_words$word) %>% |
07 |
filter(!word2 %in% stop_words$word) |
08 |
bigram_counts <- bigrams_filtered %>% |
09 |
count(word1, word2, sort = TRUE) |
10 |
bigrams_united <- bigrams_filtered %>% |
11 |
unite(bigram, word1, word2, sep = " ") |
13 |
count(bigram, sort = TRUE) |
最常见的bigram是“rainbow tower”,其次是“hawaiian village”。
我们可以在单词网络中可视化bigram:
01 |
review_subject <- df %>% |
02 |
unnest_tokens(word, review_body) %>% |
04 |
my_stopwords <- data_frame(word = c(as.character(1:10))) |
05 |
review_subject <- review_subject %>% |
06 |
anti_join(my_stopwords) |
07 |
title_word_pairs <- review_subject %>% |
08 |
pairwise_count(word, ID, sort = TRUE, upper = FALSE) |
12 |
graph_from_data_frame() %>% |
13 |
ggraph(layout = "fr") + |
14 |
geom_edge_link(aes(edge_alpha = n, edge_width = n), edge_colour = "cyan4") + |
15 |
geom_node_point(size = 5) + |
16 |
geom_node_text(aes(label = name), repel = TRUE, |
17 |
point.padding = unit(0.2, "lines")) + |
18 |
ggtitle('Word network in TripAdvisor reviews') |
上面显示了TripAdvisor评论中常见的bigram组合,显示了至少出现了1000次且不是停用词的单词。
网络图显示了前几个词(“hawaiian ”,“village ”,“ocean ”和“view ”)之间的紧密联系。然而,我们在网络中并没有看到清晰的聚类结构。
TRIGRAM
Bigram有时是不够的,让我们看看希尔顿夏威夷度假村在TripAdvisor评论中最常见的trigram(三元语法)?
01 |
review_trigrams <- df %>% |
02 |
unnest_tokens(trigram, review_body, token = "ngrams", n = 3) |
04 |
trigrams_separated <- review_trigrams %>% |
05 |
separate(trigram, c("word1", "word2", "word3"), sep = " ") |
07 |
trigrams_filtered <- trigrams_separated %>% |
08 |
filter(!word1 %in% stop_words$word) %>% |
09 |
filter(!word2 %in% stop_words$word) %>% |
10 |
filter(!word3 %in% stop_words$word) |
12 |
trigram_counts <- trigrams_filtered %>% |
13 |
count(word1, word2, word3, sort = TRUE) |
15 |
trigrams_united <- trigrams_filtered %>% |
16 |
unite(trigram, word1, word2, word3, sep = " ") |
19 |
count(trigram, sort = TRUE) |
最常见的trigram 是“hilton hawaiian village”,其次是“hilton hawaiian village”,依此类推。
评论中的重要的词汇趋势
随着时间的推移,哪些词语和话题变得更频繁(或者更频繁)了?这些可以让我们了解酒店不断变化的生态系统,例如服务,翻新,问题解决,让我们预测哪些话题的关联词将继续增长。
我们需要了解的问题是:在TripAdvisor评论中,随着时间的推移,哪些词的频率在增加?
01 |
reviews_per_month <- df %>% |
03 |
summarize(month_total = n()) |
04 |
word_month_counts <- review_words %>% |
05 |
filter(word_total >= 1000) %>% |
06 |
count(word, month) %>% |
07 |
complete(word, month, fill = list(n = 0)) %>% |
08 |
inner_join(reviews_per_month, by = "month") %>% |
09 |
mutate(percent = n / month_total) %>% |
10 |
mutate(year = year(month) + yday(month) / 365) |
11 |
mod <- ~ glm(cbind(n, month_total - n) ~ year, ., family = "binomial") |
12 |
slopes <- word_month_counts %>% |
14 |
mutate(model = map(data, mod)) %>% |
15 |
unnest(map(model, tidy)) %>% |
16 |
filter(term == "year") %>% |
17 |
arrange(desc(estimate)) |
20 |
inner_join(word_month_counts, by = "word") %>% |
21 |
mutate(word = reorder(word, -estimate)) %>% |
22 |
ggplot(aes(month, n / month_total, color = word)) + |
23 |
geom_line(show.legend = FALSE) + |
24 |
scale_y_continuous(labels = percent_format()) + |
25 |
facet_wrap(~ word, scales = "free_y") + |
26 |
expand_limits(y = 0) + |
28 |
y = "Percentage of reviews containing this word", |
29 |
title = "9 fastest growing words in TripAdvisor reviews", |
30 |
subtitle = "Judged by growth rate over 15 years") |
在2010年之前,我们可以看到关于“friday fireworks”和“lagoon”的讨论高峰。像“resort fee”和“busy”这样的词在2005年之前增长最快。
在评论中,哪些词的频率在下降?
2 |
filter(word %in% c("service", "food")) %>% |
3 |
ggplot(aes(month, n / month_total, color = word)) + |
4 |
geom_line(size = 1, alpha = .8) + |
5 |
scale_y_continuous(labels = percent_format()) + |
8 |
y = "Percentage of reviews containing this term", title = "service vs food in terms of reviewers interest") |
服务和食品都是2010年之前的主要话题。关于服务和食品的讨论在2003年左右的数据开始时达到顶峰,在2005年之后一直呈下降趋势,偶尔出现高峰。
情绪分析
情感分析广泛应用于客户反馈,需要分析的有:评论和调查结果,在线和社交媒体。它适用于从营销到客户服务以及临床医学的各种应用。
在我们的案例中,我们的目的是确定评论者(即酒店客人)对他过去对酒店的体验的看法。这种可能是判断或评价。
评论中最常见的正面和负面词汇。
02 |
filter(!is.na(review_body)) %>% |
03 |
select(ID, review_body) %>% |
04 |
group_by(row_number()) %>% |
06 |
tidy_reviews <- reviews %>% |
07 |
unnest_tokens(word, review_body) |
08 |
tidy_reviews <- tidy_reviews %>% |
11 |
bing_word_counts <- tidy_reviews %>% |
12 |
inner_join(get_sentiments("bing")) %>% |
13 |
count(word, sentiment, sort = TRUE) %>% |
17 |
group_by(sentiment) %>% |
20 |
mutate(word = reorder(word, n)) %>% |
21 |
ggplot(aes(word, n, fill = sentiment)) + |
22 |
geom_col(show.legend = FALSE) + |
23 |
facet_wrap(~sentiment, scales = "free") + |
24 |
labs(y = "Contribution to sentiment", x = NULL) + |
26 |
ggtitle('Words that contribute to positive and negative sentiment in the reviews') |
让我们试试另一个情绪库,看看结果是否相同。
01 |
contributions <- tidy_reviews %>% |
02 |
inner_join(get_sentiments("afinn"), by = "word") %>% |
04 |
summarize(occurences = n(), |
05 |
contribution = sum(score)) |
07 |
top_n(25, abs(contribution)) %>% |
08 |
mutate(word = reorder(word, contribution)) %>% |
09 |
ggplot(aes(word, contribution, fill = contribution > 0)) + |
10 |
ggtitle('Words with the greatest contributions to positive/negative |
11 |
sentiment in reviews') + |
12 |
geom_col(show.legend = FALSE) + |
有趣的是,“diamond ”(diamond head)被归类为积极的情绪。
这里有一个可能出现的问题,例如,“clean”,在不通的上下文,如前面带有“not”,则会产生负面情绪。事实上,在大多数unigram(一元模型)会有这个否定的问题。所以我们需要进行下一步:
使用Bigrams在情感分析中提供语境
我们想知道单词前面有“not”这样的单词的频率。
2 |
filter(word1 == "not") %>% |
3 |
count(word1, word2, sort = TRUE) |
数据中有850次单词“a”前面有单词“not”,而698次单词“the”前面单词“not”。但这些信息没有意义。
1 |
AFINN <- get_sentiments("afinn") |
2 |
not_words <- bigrams_separated %>% |
3 |
filter(word1 == "not") %>% |
4 |
inner_join(AFINN, by = c(word2 = "word")) %>% |
5 |
count(word2, score, sort = TRUE) %>% |
这告诉我们,在数据中,跟随“not”的最常见的情感关联词是“worth”,而跟随“not”的第二个常见情感关联词是“recommend”,这通常得分为2分。
那么,在我们的数据中,哪些词在错误的方向上做了最大的“贡献”呢?
02 |
mutate(contribution = n * score) %>% |
03 |
arrange(desc(abs(contribution))) %>% |
05 |
mutate(word2 = reorder(word2, contribution)) %>% |
06 |
ggplot(aes(word2, n * score, fill = n * score > 0)) + |
07 |
geom_col(show.legend = FALSE) + |
08 |
xlab("Words preceded by "not"") + |
09 |
ylab("Sentiment score * number of occurrences") + |
10 |
ggtitle('The 20 words preceded by "not" that had the greatest contribution to |
11 |
sentiment scores, positive or negative direction') + |
“not worth”,“not great”,“not good”,“not recommend”和“not like”的最大的错误识别原因,这使得文本看起来比实际上更积极。
除了“not”之外,还有其他词语否定后续词语,例如“no”,“never”和“without”。
01 |
negation_words <- c("not", "no", "never", "without") |
03 |
negated_words <- bigrams_separated %>% |
04 |
filter(word1 %in% negation_words) %>% |
05 |
inner_join(AFINN, by = c(word2 = "word")) %>% |
06 |
count(word1, word2, score, sort = TRUE) %>% |
10 |
mutate(contribution = n * score, |
11 |
word2 = reorder(paste(word2, word1, sep = "__"), contribution)) %>% |
13 |
top_n(12, abs(contribution)) %>% |
14 |
ggplot(aes(word2, contribution, fill = n * score > 0)) + |
15 |
geom_col(show.legend = FALSE) + |
16 |
facet_wrap(~ word1, scales = "free") + |
17 |
scale_x_discrete(labels = function(x) gsub("__.+$", "", x)) + |
18 |
xlab("Words preceded by negation term") + |
19 |
ylab("Sentiment score * # of occurrences") + |
20 |
ggtitle('The most common positive or negative words to follow negations |
21 |
such as "no", "not", "never" and "without"') + |
看起来把一个词误认为是正面情绪的最大来源是“not worth/great/good/recommend”,而错误分类的负面情绪的最大来源是“not bad”和“no problem”。
最后,让我们找出最正面和最负面的评论。
1 |
sentiment_messages <- tidy_reviews %>% |
2 |
inner_join(get_sentiments("afinn"), by = "word") %>% |
4 |
summarize(sentiment = mean(score), |
9 |
arrange(desc(sentiment)) |
最正面的评论ID是2363:
1 |
df [which(df $ ID == 2363),] $ review_body [1] |
最负面评论的ID为3748:
1 |
df [which(df $ ID == 3748),] $ review_body [1] |
Github:https://github.com/susanli2016/Data-Analysis-with-R/blob/master/Text%20Mining%20Hilton%20Hawaiian%20Village%20TripAdvisor%20Reviews.Rmd
负责抓取的Python代码:https://github.com/susanli2016/NLP-with-Python/blob/master/Web%20scraping%20Hilton%20Hawaiian%20Village%20TripAdvisor%20Reviews.py
以上是关于文本挖掘和情感分析的基础示例的主要内容,如果未能解决你的问题,请参考以下文章
Python做文本挖掘的情感极性分析
应用Python做文本挖掘的情感极性分析
iDST-文本挖掘算法专家-情感分析&文本反垃圾-杭州
文本挖掘-避孕药主题情感分析
学术观点| 拿“双十一”开涮的文本挖掘:电商评论情感分析
PaperDaily|基于社交网络文本挖掘的品牌情感分析