C#封装YOLOv4算法进行目标检测
Posted DotNet
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了C#封装YOLOv4算法进行目标检测相关的知识,希望对你有一定的参考价值。
(给DotNet加星标,提升.Net技能)
转自:叮咚z cnblogs.com/zypblog/p/13656366.html
概述
官网:https://pjreddie.com/darknet/
Darknet:https://github.com/AlexeyAB/darknet
C#封装代码:https://github.com/zhang8043/YoloWrapper
YOLO: 是实现实时物体检测的系统,Darknet是基于YOLO的框架
采用C#语言对 YOLOv4 目标检测算法封装,将模型在实际应用系统中落地,实现模型在线远程调用。
环境准备
本章只讲解如何对YOLOv4封装进行详解,具体环境安装过程不做介绍
查看你的GPU计算能力是否支持 >= 3.0:https://en.wikipedia.org/wiki/CUDA#GPUs_supported
Windows运行要求
CMake >= 3.12: https://cmake.org/download/
CUDA >= 10.0: https://developer.nvidia.com/cuda-toolkit-archive
OpenCV >= 2.4: https://opencv.org/releases/
cuDNN >= 7.0: https://developer.nvidia.com/rdp/cudnn-archive
Visual Studio 2017/2019: https://visualstudio.microsoft.com
我所使用的环境
系统版本:Windows 10 专业版
显卡:GTX 1050 Ti
CMake版本:3.18.2
CUDA版本:10.1
OpenCV版本:4.4.0
cuDNN版本:10.1
MSVC 2017/2019: Visual Studio 2019
程序代码准备
源代码下载
使用Git
git clone https://github.com/AlexeyAB/darknet
cd darknet
代码结构
将YOLOv4编译为DLL
详细教程:https://zhuanlan.zhihu.com/p/97605980,这个教程描述的很详细。
进入 darknetuilddarknet 目录,打开解决方案 yolo_cpp_dll.sln
设置Windows SDK版本和平台工具集为当前系统安装版本
设置Release和x64
然后执行以下操作:Build-> Build yolo_cpp_dll
已完成生成项目“yolo_cpp_dll.vcxproj”的操作。
========== 生成: 成功 1 个,失败 0 个,最新 0 个,跳过 0 个 ==========
在打包DLL的过程中可能遇到如下问题
C1041
无法打开程序数据库“D:代码管理Cdarknetuilddarknetx64DLL_Releasevc142.pdb”;如果要将多个 CL.EXE 写入同一个 .PDB 文件,请使用 /FSyolo_cpp_dllC:UsersadministratorAppDataLocalTemp mpxft_00005db0_00000000-6_dropout_layer_kernels.compute_75.cudafe1.cpp1
MSB3721
命令“"C:Program FilesNVIDIA GPU Computing ToolkitCUDAv10.1in
vcc.exe" -gencode=arch=compute_30,code="sm_30,compute_30" -gencode=arch=compute_75,code="sm_75,compute_75" --use-local-env -ccbin "C:Program Files (x86)Microsoft Visual Studio2019CommunityVCToolsMSVC14.27.29110inHostX86x64" -x cu -IC:opencvuildinclude -IC:opencv_3.0opencvuildinclude -I....include -I....3rdpartystbinclude -I....3rdpartypthreadsinclude -I"C:Program FilesNVIDIA GPU Computing ToolkitCUDAv10.1include" -I"C:Program FilesNVIDIA GPU Computing ToolkitCUDAv10.1include" -Iinclude -Iinclude -I"C:Program FilesNVIDIA GPU Computing ToolkitCUDAv10.1include" --keep-dir x64Release -maxrregcount=0 --machine 64 --compile -cudart static -DCUDNN_HALF -DCUDNN -DGPU -DLIB_EXPORTS -D_TIMESPEC_DEFINED -D_SCL_SECURE_NO_WARNINGS -D_CRT_SECURE_NO_WARNINGS -DWIN32 -DNDEBUG -D_CONSOLE -D_LIB -D_WINDLL -D_MBCS -Xcompiler "/EHsc /W3 /nologo /O2 /Fdx64DLL_Releasevc142.pdb /Zi /MD " -o x64DLL_Releasedropout_layer_kernels.cu.obj "D:darknetsrcdropout_layer_kernels.cu"”已退出,返回代码为 2。yolo_cpp_dllC:Program Files (x86)Microsoft Visual Studio2019CommunityMSBuildMicrosoftVCv160BuildCustomizationsCUDA 10.1.targets757
解决方法
在VS 2019 工具》选项》项目和解决方案》生成并运行 中最大并行项目生成数设为 1
在VS 2019 项目-》属性-》配置属性-》常规 将Windows SDK版本设置为系统当前版本即可
封装YOLOv4编译后的DLL
1、进入 darknetuilddarknetx64 目录,将 pthreadGC2.dll 和 pthreadVC2.dll 拷贝到项目 Dll 文件夹
2、将编译后的YOLOv4 DLL文件拷贝到项目 Dll 文件夹
3、进入 darknetuilddarknetx64cfg 目录,将 yolov4.cfg 拷贝到项目 Cfg 文件夹
4、进入 darknetuilddarknetx64data 目录,将 coco.names 拷贝到项目 Data 文件夹
5、下载 yolov4.weights 权重文件 拷贝到 Weights 文件夹,文件245 MB https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights
项目文件
代码下载:https://github.com/zhang8043/YoloWrapper
1、YoloWrapper - YOLOv4封装项目
Cfg - 配置文件夹
Data - label文件夹
Dll - YOLOv4 编译后的DLL文件夹
Weights - YOLOv4 权重文件夹
BboxContainer.cs
BoundingBox.cs
YoloWrapper.cs - 封装主文件,调用 YOLOv4 的动态链接库
2、YoloWrapperConsole - 调用封装DLL控制台程序
Program.cs - 控制台主程序,调用 YOLOv4 封装文件
代码
YOLOv4封装项目
YoloWrapper.cs - 封装主文件,调用 YOLOv4 的动态链接库
using System;
using System.Runtime.InteropServices;
namespace YoloWrapper
{
public class YoloWrapper : IDisposable
{
private const string YoloLibraryName = @"Dllsyolo_cpp_dll.dll";
[DllImport(YoloLibraryName, EntryPoint = "init")]
private static extern int InitializeYolo(string configurationFilename, string weightsFilename, int gpu);
[DllImport(YoloLibraryName, EntryPoint = "detect_image")]
private static extern int DetectImage(string filename, ref BboxContainer container);
[DllImport(YoloLibraryName, EntryPoint = "detect_mat")]
private static extern int DetectImage(IntPtr pArray, int nSize, ref BboxContainer container);
[DllImport(YoloLibraryName, EntryPoint = "dispose")]
private static extern int DisposeYolo();
public YoloWrapper(string configurationFilename, string weightsFilename, int gpu)
{
InitializeYolo(configurationFilename, weightsFilename, gpu);
}
public void Dispose()
{
DisposeYolo();
}
public BoundingBox[] Detect(string filename)
{
var container = new BboxContainer();
var count = DetectImage(filename, ref container);
return container.candidates;
}
public BoundingBox[] Detect(byte[] imageData)
{
var container = new BboxContainer();
var size = Marshal.SizeOf(imageData[0]) * imageData.Length;
var pnt = Marshal.AllocHGlobal(size);
try
{
Marshal.(imageData, 0, pnt, imageData.Length);
var count = DetectImage(pnt, imageData.Length, ref container);
if (count == -1)
{
throw new NotSupportedException($"{YoloLibraryName} has no OpenCV support");
}
}
catch (Exception exception)
{
return null;
}
finally
{
Marshal.FreeHGlobal(pnt);
}
return container.candidates;
}
}
}
BboxContainer.cs
using System.Runtime.InteropServices;
namespace YoloWrapper
{
[StructLayout(LayoutKind.Sequential)]
public struct BboxContainer
{
[MarshalAs(UnmanagedType.ByValArray, SizeConst = 1000)]
public BoundingBox[] candidates;
}
}
BoundingBox.cs
using System;
using System.Runtime.InteropServices;
namespace YoloWrapper
{
[StructLayout(LayoutKind.Sequential)]
public struct BoundingBox
{
public UInt32 x, y, w, h;
public float prob;
public UInt32 obj_id;
public UInt32 track_id;
public UInt32 frames_counter;
public float x_3d, y_3d, z_3d;
}
}
调用封装DLL控制台程序
BoundingBox.cs
using ConsoleTables;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using YoloWrapper;
namespace YoloWrapperConsole
{
class Program
{
private const string configurationFilename = @".Cfgyolov4.cfg";
private const string weightsFilename = @".Weightsyolov4.weights";
private const string namesFile = @".Datacoco.names";
private static Dictionary<int, string> _namesDic = new Dictionary<int, string>();
private static YoloWrapper.YoloWrapper _wrapper;
static void Main(string[] args)
{
Initilize();
Console.Write("ImagePath:");
string imagePath = Console.ReadLine();
var bbox = _wrapper.Detect(imagePath);
Convert(bbox);
Console.ReadKey();
}
private static void Initilize()
{
_wrapper = new YoloWrapper.YoloWrapper(configurationFilename, weightsFilename, 0);
var lines = File.ReadAllLines(namesFile);
for (var i = 0; i < lines.Length; i++)
_namesDic.Add(i, lines[i]);
}
private static void Convert(BoundingBox[] bbox)
{
Console.WriteLine("Result:");
var table = new ConsoleTable("Type", "Confidence", "X", "Y", "Width", "Height");
foreach (var item in bbox.Where(o => o.h > 0 || o.w > 0))
{
var type = _namesDic[(int)item.obj_id];
table.AddRow(type, item.prob, item.x, item.y, item.w, item.h);
}
table.Write(Format.MarkDown);
}
}
}
测试返回结果
控制台
- EOF -
看完本文有收获?请转发分享给更多人
关注「DotNet」加星标,提升.Net技能
好文章,我在看❤️
以上是关于C#封装YOLOv4算法进行目标检测的主要内容,如果未能解决你的问题,请参考以下文章
基于YOLOv4的目标检测系统(附MATLAB代码+GUI实现)
TensorFlow2深度学习实战(十八):目标检测算法YOLOv4-Tiny实战