flink 有状态udf 引起血案一

Posted 浪尖聊大数据

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了flink 有状态udf 引起血案一相关的知识,希望对你有一定的参考价值。

场景

最近在做一个画像的任务,sql实现的,其中有一个udf,会做很多事情,包括将从redis读出历史值加权,并将中间结果和加权后的结果更新到redis。

大家都知道,flink 是可以支持事件处理的,也就是可以没有时间的概念,那么在聚合,join等操作的时候,flink内部会维护一个状态,假如此时你也用redis维护了历史状态,也即是类似 result = currentState(flink)+lastState(redis),且此时要针对计算的结果用where进行筛选.

SQL如下

CREATE VIEW view_count AS
select
 `time`,
 gid,
 cid,
 count(feed_id) * 1 as strength
FROM
 view_cid
GROUP BY
 gid,
 cid,`time`;

CREATE VIEW view_strength AS select
 `time`,
 gid,
 cid ,
 Get_Strength_Weaken(gid, cid, cast(strength as double), `time`, 0.95)  as `result`
FROM
 view_count
;

insert into
 hx_app_server_sink_common
SELECT
 gid,
 cid,
 `result`
FROM
 view_strength
where `result` <> '0.0'
GROUP BY
 gid,
 cid,
 `result`;

业务分析

第一个sql视图完成的是首先分组,然后统计某一个字段并乘以权重;

第二个sql视图,udf :Get_Strength_Weaken完成当前值和历史值叠加工作,历史值存储在redis,同时将结果返回并更新redis,返回值作为result字段。

第三个sql在输出的时候,result字段作为了where的条件和group by里的字段。

这时候生成的flink概图如下:

观察中间的结构图可以发现,Get_Strength_Weaken被调用两次:

1. where条件,这个的生成是由于第三条sql

where `result` <> '0.0'

产生的执行计划,是不是看起来很懵逼。。。

2. select里面还有一次调用Get_Strength_Weaken,这个很明显。

当然,可以打印一下flink udf里eval函数的调用细节日志,很容易发现重复调用的问题,浪院长这个也是通过分析日志,对比输出结果来得出的论。

综合上面分析和udf调用日志,结论就是udf被调用了两次。

对于这个flink的udf被多次调用引起的结果偏大,整整调试了一下午。

由于上面分析可以得出结论,flink将where条件下推了,where 条件判断会先执行,而select里后执行,那么可以调整SQL,如下:

CREATE VIEW view_count AS
select
`time`,
gid,
cid,
count(feed_id) * 1 as strength
FROM
view_cid
GROUP BY
gid,
cid,`time`;

CREATE VIEW view_strength AS select
`time`,
gid,
cid ,
getResult(gid,cid) as `result`
FROM
view_count
where Get_Strength_Weaken(gid, cid, cast(strength as double), `time`, 0.95)  as `result` <> '0.0'
;

insert into
hx_app_server_sink_common
SELECT
gid,
cid,
`result`
FROM
view_strength
GROUP BY
gid,
cid,
`result`;

那么实际上,select里的udf主要目的是取出来计算结果,那么这个时候可以写个简单的udf--getResult,只让他从redis获取 where条件里更新到redis里的结果,由于该udf是无状态的即使多次调用,也无所谓。

所以,总结一下,对于flink 来说,由于基于事件的处理,聚合、join等操作会有状态缓存,那么此时再用到含有外部存储状态的udf,一定要慎重,结合执行计划,来合理放置udf的位置,避免出错。

当然,调试阶段最好是有详细的日志,便于分析和定位问题。

flink 状态删除

其实,flink聚合等内部状态有配置可以使其自动删除的,具体配置使用如下:

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(env);

// obtain query configuration from TableEnvironment
StreamQueryConfig qConfig = tableEnv.queryConfig();
// set query parameters
qConfig.withIdleStateRetentionTime(Time.hours(12));

// define query
Table result = ...

// create TableSink
TableSink<Row> sink = ...

// emit result Table via a TableSink
result.writeToSink(sink, qConfig);

// convert result Table into a DataStream<Row>
DataStream<Row> stream = tableEnv.toAppendStream(result, Row.class, qConfig);

[完]

推荐阅读:




以上是关于flink 有状态udf 引起血案一的主要内容,如果未能解决你的问题,请参考以下文章

Linux内核参数引起的 K8s 集群血案

一个参数引起的mysql从库宕机血案

正则匹配引发的血案

一个参数引起的mysql从库宕机血案

一个MySQL-JDBC驱动bug引起的血案……

首发Flink新一代流式计算框架的体系架构及应用