Flink部署-standalone模式
Posted 笨小孩撸代码
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Flink部署-standalone模式相关的知识,希望对你有一定的参考价值。
安装环境信息
flink-1.6.2-bin-hadoop27-scala_2.11.tgz
hadoop-2.7.5
java 1.8
zookeeper 3.4.6
os:centos 6.4
1、下载
直接去flink的社区下载就可以了。http://flink.apache.org/downloads.html
2、解压
tar -zxvf flink-1.6.2-bin-hadoop27-scala_2.11.tgz
3、修改环境变量 ~.bash_profile
export FLINK_HOME=/opt/flink-1.6.2
export PATH=$FLINK_HOME/bin:$PATH
4、修改flink-conf.yaml配置文件,先配置一个简单版本,standalone的模式
jobmanager.rpc.address: cdh1
jobmanager.rpc.port: 6123
jobmanager.heap.size: 1024m
taskmanager.heap.size: 1024m
taskmanager.numberOfTaskSlots: 4
parallelism.default: 12
5、修改slaves和masters2个文件,用来配置taskManager和JobManager信息
[hadoop@cdh1 conf]$ cat slaves
cdh2
cdh3
cdh4
cdh5
[hadoop@cdh1 conf]$ cat masters
cdh1:8081
6、将flink安装所有信息已经环境信息同步到其他机器上面,这里有几台机器就要执行几次
scp .bash_profile hadoop@cdh3:~/.bash_profile
scp -r ./flink-1.6.2 hadoop@cdh3:/opt/
7、启动flink
[hadoop@cdh1 bin]$ ./start-cluster.sh
8、启动完成已经我们可以用jps。分别可以看到JobManager和TaskManager的2个进程
[hadoop@cdh1 bin]$ jps
3866 StandaloneSessionClusterEntrypoint
[hadoop@cdh2 ~]$ jps
3534 TaskManagerRunner
已经表示搭建完成了,现在我们开始验证一下集群
使用start-scala-shell.sh来验证
${FLINK_HOME}/bin/start-scala-shell.sh是flink提供的交互式clinet,可以用于代码片段的测试,方便开发工作,它有两种启动方式,一种是工作在本地,另一种是工作到集群。本例中因为机器连接非常方便,就直接使用集群进行测试,在开发中,如果集群连接不是非常方便,可以连接到本地,在本地开发测试通过后,再连接到集群进行部署工作。如果程序有依赖的jar包,则可以使用 -a <path/to/jar.jar> 或 --addclasspath <path/to/jar.jar>参数来添加依赖。
1.本地连接
${FLINK_HOME}/bin/start-scala-shell.sh local
2.集群连接
${FLINK_HOME}/bin/start-scala-shell.sh remote <hostname> <portnumber>
3.带有依赖包的格式
${FLINK_HOME}/bin/start-scala-shell.sh [local|remote<host><port>] --addclasspath<path/to/jar.jar>
4.查看帮助
${FLINK_HOME}/bin/start-scala-shell.sh --help
[hadoop@cdh2 bin]$ ./start-scala-shell.sh --help
Flink Scala Shell
Usage: start-scala-shell.sh [local|remote|yarn] [options] <args>...
Command: local [options]
Starts Flink scala shell with a local Flink cluster
-a, --addclasspath <path/to/jar>
Specifies additional jars to be used in Flink
Command: remote [options] <host> <port>
Starts Flink scala shell connecting to a remote cluster
<host> Remote host name as string
<port> Remote port as integer
-a, --addclasspath <path/to/jar>
Specifies additional jars to be used in Flink
Command: yarn [options]
Starts Flink scala shell connecting to a yarn cluster
-n, --container arg Number of YARN container to allocate (= Number of TaskManagers)
-jm, --jobManagerMemory arg
Memory for JobManager container
-nm, --name <value> Set a custom name for the application on YARN
-qu, --queue <arg> Specifies YARN queue
-s, --slots <arg> Number of slots per TaskManager
-tm, --taskManagerMemory <arg>
Memory per TaskManager container
-a, --addclasspath <path/to/jar>
Specifies additional jars to be used in Flink
--configDir <value> The configuration directory.
-h, --help Prints this usage text
我们 使用集群模式去验证
[hadoop@cdh1 bin]$ ./start-scala-shell.sh remote 192.168.18.160 8081
运行如下案例代码
Scala> val text = benv.fromElements(
"To be, or not to be,--that is the question:--",
"Whether 'tis nobler in the mind to suffer",
"The slings and arrows of outrageous fortune",
"Or to take arms against a sea of troubles,")
Scala> val counts = text
.flatMap { _.toLowerCase.split("\\W+") }
.map { (_, 1) }.groupBy(0).sum(1)
Scala> counts.print()
运行结果
web url也可以看到详细的信息
遇到异常情况:
我们这边是因为安装了Scala导致通信失败,将Scala的环境信息去掉就可以了。具体问题还不是很清楚,待后续查明白。
java.net.ConnectException: Connection refused (Connection refused)
at java.net.PlainSocketImpl.socketConnect(Native Method)
at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)
at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)
at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188)
at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)
at java.net.Socket.connect(Socket.java:589)
at org.apache.flink.streaming.api.functions.source.SocketTextStreamFunction.run(SocketTextStreamFunction.java:96)
at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:94)
at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:58)
at org.apache.flink.streaming.runtime.tasks.SourceStreamTask.run(SourceStreamTask.java:99)
at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:300)
at org.apache.flink.runtime.taskmanager.Task.run(Task.java:711)
at java.lang.Thread.run(Thread.java:745)
2018-11-19 01:49:52,298 INFO org.apache.flink.runtime.executiongraph.ExecutionGraph
- Job Socket Window WordCount (8b38f995aa8e61fd520b61e0888ecd46) switched from state RUNNING to FAILING.
java.net.ConnectException: Connection refused (Connection refused)
at java.net.PlainSocketImpl.socketConnect(Native Method)
at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)
at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)
at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188)
at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)
at java.net.Socket.connect(Socket.java:589)
at org.apache.flink.streaming.api.functions.source.SocketTextStreamFunction.run(SocketTextStreamFunction.java:96)
at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:94)
at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:58)
at org.apache.flink.streaming.runtime.tasks.SourceStreamTask.run(SourceStreamTask.java:99)
at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:300)
at org.apache.flink.runtime.taskmanager.Task.run(Task.java:711)
at java.lang.Thread.run(Thread.java:745)
以上是关于Flink部署-standalone模式的主要内容,如果未能解决你的问题,请参考以下文章
2.Flink安装部署Local本地模式-了解Standalone独立集群模式Standalone-HA高可用集群模式(原理|操作|测试)
Flink从入门到真香(Flink环境部署-集群standalone模式)
flink部署操作-flink standalone集群安装部署