用Python/Keras/Flask/Docker在Kubernetes上部署深度学习模型
Posted 分布式实验室
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了用Python/Keras/Flask/Docker在Kubernetes上部署深度学习模型相关的知识,希望对你有一定的参考价值。
在Google Cloud上创建用户
使用Keras/Flask/Docker搭建一个REST API的机器学习模型服务
用Kubernetes部署上述模型
enjoy it
sudo yum remove docker docker-client docker-client-latest docker-common docker-latest docker-latest-logrotate docker-logrotate docker-selinux docker-engine-selinux docker-engine
sudo yum install -y yum-utils device-mapper-persistent-data lvm2
sudo yum-config-manager — add-repo https://download.docker.com/linux/centos/docker-ce.repo
sudo yum install docker-ce
sudo systemctl start docker
sudo docker run hello-world
Hello from Docker!
This message shows that your installation appears to be working correctly.To generate this message, Docker took the following steps: 1. The Docker client contacted the Docker daemon. 2. The Docker daemon pulled the "hello-world" image from the Docker Hub. (amd64) 3. The Docker daemon created a new container from that image which runs the executable that produces the output you are currently reading. 4. The Docker daemon streamed that output to the Docker client, which sent it to your terminal
global graph
graph = tf.get_default_graph()
...
with graph.as_default():
preds = model.predict(image)
mkdir keras-app
cd keras-app
# USAGE
# Start the server:
# python app.py
# Submit a request via cURL:
# curl -X POST -F image=@dog.jpg 'http://localhost:5000/predict'
# import the necessary packages
from keras.applications import ResNet50
from keras.preprocessing.image import img_to_array
from keras.applications import imagenet_utils
from PIL import Image
import numpy as np
import flask
import io
import tensorflow as tf
# initialize our Flask application and the Keras model
app = flask.Flask(__name__)
model = None
def load_model():
# load the pre-trained Keras model (here we are using a model
# pre-trained on ImageNet and provided by Keras, but you can
# substitute in your own networks just as easily)
global model
model = ResNet50(weights="imagenet")
global graph
graph = tf.get_default_graph()
def prepare_image(image, target):
# if the image mode is not RGB, convert it
if image.mode != "RGB":
image = image.convert("RGB")
# resize the input image and preprocess it
image = image.resize(target)
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
image = imagenet_utils.preprocess_input(image)
# return the processed image
return image
@app.route("/predict", methods=["POST"])
def predict():
# initialize the data dictionary that will be returned from the
# view
data = {"success": False}
# ensure an image was properly uploaded to our endpoint
if flask.request.method == "POST":
if flask.request.files.get("image"):
# read the image in PIL format
image = flask.request.files["image"].read()
image = Image.open(io.BytesIO(image))
# preprocess the image and prepare it for classification
image = prepare_image(image, target=(224, 224))
# classify the input image and then initialize the list
# of predictions to return to the client
with graph.as_default():
preds = model.predict(image)
results = imagenet_utils.decode_predictions(preds)
data["predictions"] = []
# loop over the results and add them to the list of
# returned predictions
for (imagenetID, label, prob) in results[0]:
r = {"label": label, "probability": float(prob)}
data["predictions"].append(r)
# indicate that the request was a success
data["success"] = True
# return the data dictionary as a JSON response
return flask.jsonify(data)
# if this is the main thread of execution first load the model and
# then start the server
if __name__ == "__main__":
print(("* Loading Keras model and Flask starting server..."
"please wait until server has fully started"))
load_model()
app.run(host='0.0.0.0')
keras
tensorflow
flask
gevent
pillow
requests
FROM python:3.6
WORKDIR /app
COPY requirements.txt /app
RUN pip install -r ./requirements.txt
COPY app.py /app
CMD ["python", "app.py"]~
sudo docker build -t keras-app:latest .
sudo docker run -d -p 5000:5000 keras-app
[gustafcavanaugh@instance-3 ~]$ sudo docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
d82f65802166 keras-app "python app.py" About an hour ago Up About an hour 0.0.0.0:5000->5000/tcp nervous_northcutt
curl -X POST -F image=@dog.jpg 'http://localhost:5000/predict'
{"predictions":[{"label":"beagle","probability":0.987775444984436},{"label":"pot","probability":0.0020967808086425066},{"label":"Cardigan","probability":0.001351703773252666},{"label":"Walker_hound","probability":0.0012711131712421775},{"label":"Brittany_spaniel","probability":0.0010085132671520114}],"success":true}
Login Succeeded
REPOSITORY TAG IMAGE ID CREATED SIZE keras-app latest ddb507b8a017 About an hour ago 1.61GB
#Format
sudo docker tag <your image id> <your docker hub id>/<app name>
#My Exact Command - Make Sure To Use Your Inputs
sudo docker tag ddb507b8a017 gcav66/keras-app
#Format
sudo docker push <your docker hub name>/<app-name>
#My exact command
sudo docker push gcav66/keras-app
kubectl run keras-app --image=gcav66/keras-app --port 5000
gustafcavanaugh@cloudshell:~ (basic-web-app-test)$ kubectl get pods
NAME READY STATUS RESTARTS AGE
keras-app-79568b5f57-5qxqk 1/1 Running 0 1m
kubectl expose deployment keras-app --type=LoadBalancer --port 80 --target-port 5000
gustafcavanaugh@cloudshell:~ (basic-web-app-test)$ kubectl get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
keras-app LoadBalancer 10.11.250.71 35.225.226.94 80:30271/TCP 4m
kubernetes ClusterIP 10.11.240.1 <none> 443/TCP 18m
$ curl -X POST -F image=@dog.jpg 'http://35.225.226.94/predict'
{"predictions":[{"label":"beagle","probability":0.987775444984436},{"label":"pot","probability":0.0020967808086425066},{"label":"Cardigan","probability":0.001351703773252666},{"label":"Walker_hound","probability":0.0012711131712421775},{"label":"Brittany_spaniel","probability":0.0010085132671520114}],"success":true}
https://blog.keras.io/building-a-simple-keras-deep-learning-rest-api.html
https://github.com/tensorflow/tensorflow/issues/14356
以上是关于用Python/Keras/Flask/Docker在Kubernetes上部署深度学习模型的主要内容,如果未能解决你的问题,请参考以下文章