python为什么运行效率不高

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python为什么运行效率不高相关的知识,希望对你有一定的参考价值。

原因:1、python是动态语言;2、python是解释执行,但是不支持JIT;3、python中一切都是对象,每个对象都需要维护引用计数,增加了额外的工作。4、python GIL;5、垃圾回收。

当我们提到一门编程语言的效率时:通常有两层意思,第一是开发效率,这是对程序员而言,完成编码所需要的时间;另一个是运行效率,这是对计算机而言,完成计算任务所需要的时间。编码效率和运行效率往往是鱼与熊掌的关系,是很难同时兼顾的。不同的语言会有不同的侧重,python语言毫无疑问更在乎编码效率,life is short,we use python。

虽然使用python的编程人员都应该接受其运行效率低的事实,但python在越多越来的领域都有广泛应用,比如科学计算 、web服务器等。程序员当然也希望python能够运算得更快,希望python可以更强大。

首先,python相比其他语言具体有多慢,这个不同场景和测试用例,结果肯定是不一样的。这个网址给出了不同语言在各种case下的性能对比,这一页是python3和C++的对比,下面是两个case:

从上图可以看出,不同的case,python比C++慢了几倍到几十倍。

python运算效率低,具体是什么原因呢,下列罗列一些:

第一:python是动态语言

一个变量所指向对象的类型在运行时才确定,编译器做不了任何预测,也就无从优化。举一个简单的例子: r = a + b。 a和b相加,但a和b的类型在运行时才知道,对于加法操作,不同的类型有不同的处理,所以每次运行的时候都会去判断a和b的类型,然后执行对应的操作。而在静态语言如C++中,编译的时候就确定了运行时的代码。

另外一个例子是属性查找,关于具体的查找顺序在《python属性查找》中有详细介绍。简而言之,访问对象的某个属性是一个非常复杂的过程,而且通过同一个变量访问到的python对象还都可能不一样(参见Lazy property的例子)。而在C语言中,访问属性用对象的地址加上属性的偏移就可以了。

第二:python是解释执行,但是不支持JIT(just in time compiler)。虽然大名鼎鼎的google曾经尝试Unladen Swallow 这个项目,但最终也折了。

第三:python中一切都是对象,每个对象都需要维护引用计数,增加了额外的工作。

第四:python GIL,GIL是Python最为诟病的一点,因为GIL,python中的多线程并不能真正的并发。如果是在IO bound的业务场景,这个问题并不大,但是在CPU BOUND的场景,这就很致命了。所以笔者在工作中使用python多线程的情况并不多,一般都是使用多进程(pre fork),或者在加上协程。即使在单线程,GIL也会带来很大的性能影响,因为python每执行100个opcode(默认,可以通过sys.setcheckinterval()设置)就会尝试线程的切换,具体的源代码在ceval.c::PyEval_EvalFrameEx。

 第五:垃圾回收,这个可能是所有具有垃圾回收的编程语言的通病。python采用标记和分代的垃圾回收策略,每次垃圾回收的时候都会中断正在执行的程序,造成所谓的顿卡。infoq上有一篇文章,提到禁用Python的GC机制后,Instagram性能提升了10%。感兴趣的读者可以去细读。

推荐课程:Python机器学习(Mooc礼欣、嵩天教授)

参考技术A

1.Python是动态语言

动态语言是一类在运行时可以改变其结构的语言,如新的函数、对象、代码可以被引入,已有的函数可以被删除或其他结构上的变化等,该类语言更具有活性,但是不可避免的因为运行时的不确定性也影响运行效率。

2.Python是解释执行

相比于C语言编译性语言编写的程序,Python是解释执行语言,其运行过程是Python运行文件程序时,Python解释器将源代码转换为字节码,然后再由Python解释器来执行这些字节码。其每次运行都要进行转换成字节码,然后再由虚拟机把字节码转换成机器语言,最后才能在硬件上运行,与编译性语言相比,其过程更复杂,性能肯定会受影响。

3.Python中一切都是对象

Python是一门面向对象的编程语言,其设计理念是一切皆是对象,如数字、字符串、元组、列表、字典、函数、方法、类、模块等都是对象,包括代码,每个对象都需要维护引用计数,因此,增加了额外工作,影响了性能。

4.Python GIL

GIL是Python最为诟病的一点,因为GIL,Python中的多线程并不能真正的并发,即使在单线程,GIL也会带来很大的性能影响,因为python每执行100个opcode就会尝试线程的切换,因此,影响Python运行效率。

5.垃圾回收

Python采用标记和分代的垃圾回收策略,每次垃圾回收的时候都会中断正在执行的程序,造成所谓的顿卡,影响运行效率。

sql server中如何查看执行效率不高的语句

sql server中,如果想知道有哪些语句是执行效率不高的,应该如何查看呢?下面就将为您介绍sql server中如何查看执行效率不高的语句,供您参考。

 
在测量功能时,先以下命令清除sql server的缓存
 
dbcc freeProcCache
 
在点击某个按钮,执行完后,再执行下面语句,就可以知道系统运行什么Sql和多少次了,其主要慢语句是那些了;
 
SELECT creation_time  N‘语句编译时间‘
        ,last_execution_time  N‘上次执行时间‘
        ,total_physical_reads N‘物理读取总次数‘
        ,total_logical_reads/execution_count N‘每次逻辑读次数‘
        ,total_logical_reads  N‘逻辑读取总次数‘
        ,total_logical_writes N‘逻辑写入总次数‘
        ,execution_count  N‘执行次数‘
        ,total_worker_time/1000 N‘所用的CPU总时间ms‘
        ,total_elapsed_time/1000  N‘总花费时间ms‘
        ,(total_elapsed_time / execution_count)/1000  N‘平均时间ms‘
        ,SUBSTRING(st.text, (qs.statement_start_offset/2) + 1,
         ((CASE statement_end_offset
          WHEN -1 THEN DATALENGTH(st.text)
          ELSE qs.statement_end_offset END
            - qs.statement_start_offset)/2) + 1) N‘执行语句‘
FROM sys.dm_exec_query_stats AS qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) st
where SUBSTRING(st.text, (qs.statement_start_offset/2) + 1,
         ((CASE statement_end_offset
          WHEN -1 THEN DATALENGTH(st.text)
          ELSE qs.statement_end_offset END
            - qs.statement_start_offset)/2) + 1) not like ‘%fetch%‘
ORDER BY  total_elapsed_time / execution_count DESC;

以上是关于python为什么运行效率不高的主要内容,如果未能解决你的问题,请参考以下文章

sql server中如何查看执行效率不高的语句

[SQL] sql server中如何查看执行效率不高的语句

python数据分析简略介绍

通过应用程序不断更新数据库,效率不高?

为啥这段代码效率不高?

#一入python深似海,从此妹纸是路人