学习笔记TF059:自然语言处理智能聊天机器人

Posted 清醒疯子

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了学习笔记TF059:自然语言处理智能聊天机器人相关的知识,希望对你有一定的参考价值。

自然语言处理,语音处理、文本处理。语音识别(speech recognition),让计算机能够“听懂”人类语音,语音的文字信息“提取”。


日本富国生命保险公司花170万美元安装人工智能系统,客户语言转换文本,分析词正面或负面。智能客服是人工能智能公司研究重点。循环神经网络(recurrent neural network,RNN)模型。


模型选择。每一个矩形是一个向量,箭头表示函数。最下面一行输入向量,最上面一行输出向量,中间一行RNN状态。一对一,没用RNN,如Vanilla模型,固定大小输入到固定大小输出(图像分类)。一对多,序列输出,图片描述,输入一张图片输出一段文字序列,CNN、RNN结合,图像、语言结合。多对一,序列输入,情感分析,输入一段文字,分类积极、消极情感,如淘宝商品评论分类,用LSTM。多对多,异步序列输入、序列输出,机器翻译,如RNN读取英文语句,以法语形式输出。多对多,同步序列输入、序列输出,视频分类,视频每帧打标记。中间RNN状态部分固定,可多次使用,不需对序列长度预先约束。Andrej Karpathy《The Unreasonable Effectiveness of Recurrent Neural Networks》。http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 。自然语言处理,语音合成(文字生成语音)、语单识别、声纹识别(声纹鉴权)、文本处理(分词、情感分析、文本挖掘)。


英文数字语音识别。https://github.com/pannous/tensorflow-speech-recognition/blob/master/speech2text-tflearn.py 。20行Python代码创建超简单语音识别器。LSTM循环神经网络,TFLearn训练英文数字口语数据集。spoken numbers pcm数据集 http://pannous.net/spoken_numbers.tar 。多人阅读0~9数字英文音频,分男女声,一段音频(wav文件)只有一个数字对应英文声音。标识方法{数字}_人名_xxx。


定义输入数据,预处理数据。语音处理成矩阵形式。梅尔频率倒谱系数(Mel frequency cepstral coefficents, MFCC)特征向量。语音分帧、取对数、逆矩阵,生成MFCC代表语音特征。


定义网络模型。LSTM模型。


训练模型,并存储模型。


预测模型。任意输入一个语音文件,预测。


语音识别,可用在智能输入法、会议快速录入、语音控制系统、智能家居领域。



#!/usr/bin/env python

#!/usr/local/bin/python

# -*- coding: utf-8 -*-

from __future__ import division, print_function, absolute_import

import tflearn

import speech_data

learning_rate = 0.0001

training_iters = 300000  # steps 迭代次数

batch_size = 64

width = 20  # mfcc features MFCC特征

height = 80  # (max) length of utterance 最大发音长度

classes = 10  # digits 数字类别

batch = word_batch = speech_data.mfcc_batch_generator(batch_size) # 生成每一批MFCC语音

X, Y = next(batch)

# train, test, _ = ,X

trainX, trainY = X, Y

testX, testY = X, Y #overfit for now

# Data preprocessing

# Sequence padding

# trainX = pad_sequences(trainX, maxlen=100, value=0.)

# testX = pad_sequences(testX, maxlen=100, value=0.)

# # Converting labels to binary vectors

# trainY = to_categorical(trainY, nb_classes=2)

# testY = to_categorical(testY, nb_classes=2)

# Network building

# LSTM模型

net = tflearn.input_data([None, width, height])

# net = tflearn.embedding(net, input_dim=10000, output_dim=128)

net = tflearn.lstm(net, 128, dropout=0.8)

net = tflearn.fully_connected(net, classes, activation='softmax')

net = tflearn.regression(net, optimizer='adam', learning_rate=learning_rate, loss='categorical_crossentropy')

# Training

model = tflearn.DNN(net, tensorboard_verbose=0)

model.load("tflearn.lstm.model")

while 1: #training_iters

  model.fit(trainX, trainY, n_epoch=100, validation_set=(testX, testY), show_metric=True,

          batch_size=batch_size)

  _y=model.predict(X)

model.save("tflearn.lstm.model")

print (_y)

print (y)



智能聊天机器人。未来方向“自然语言人机交互”。苹果Siri、微软Cortana和小冰、Google Now、百度度秘、亚马逊蓝牙音箱Amazon Echo内置语音助手Alexa、Facebook 语音助手M。通过和用户“语音机器人”对话,引导用户到对应服务。今后智能硬件、智能家居嵌入式应用。

智能聊天机器人3代技术。第一代特征工程,大量逻辑判断。第二代检索库,给定问题、聊天,从检索库找到与已有答案最匹配答案。第三代深度学习,seq2seq+Attention模型,大量训练,根据输入生成输出。


seq2seq+Attention模型原理、构建方法。翻译模型,把一个序列翻译成另一个序列。两个RNNLM,一个作编码器,一个解码器,组成RNN编码器-解码器。文本处理领域,常用编码器-解码器(encoder-decoder)框架。输入->编码器->语义编码C->解码器->输出。适合处理上下文(context)生成一个目标(target)通用处理模型。一个句子对<X,Y>,输入给定句子X,通过编码器-解码器框架生成目标句子Y。X、Y可以不同语言,机器翻译。X、Y是对话问句答句,聊天机器人。X、Y可以是图片和对应描述,看图说话。

X由x1、x2等单词序列组成,Y由y1、y2等单词序列组成。编码器编码输入X,生成中间语义编码C,解码器解码中间语义编码C,每个i时刻结合已生成y1、y2……yi-1历史信息生成Yi。生成句子每个词采用中间语义编码相同 C。短句子贴切,长句子不合语义。

实际实现聊天系统,编码器和解码器采用RNN模型、LSTM模型。句子长度超过30,LSTM模型效果急剧下降,引入Attention模型,长句子提升系统效果。Attention机制,人在做一件事情,专注做这件事,忽略周围其他事。源句子中对生成句子重要关键词权重提高,产生更准确应答。增加Attention模型编码器-解码器模型框架:输入->编码器->语义编码C1、C2、C3->解码器->输出Y1、Y2、Y3。中间语义编码Ci不断变化,产生更准确Yi。


最佳实践。https://github.com/suriyadeepan/easy_seq2seq ,依赖TensorFlow  0.12.1环境。康奈尔大学 Corpus数据集(Cornell Movie Dialogs Corpus) http://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html 。600 部电影对白。


处理聊天数据。


先把数据集整理成“问”、“答”文件,生成.enc(问句)、.dec(答句)文件。test.dec #测试集答句,test.enc #测试集问句,train.dec #训练集答句,train.enc #训练集问句。

创建词汇表,问句、答句转换成对应id形式。词汇表文件2万个词汇。vocab20000.dec #答句词汇表,vocab20000.enc #问句词汇表。_GO、_EOS、_UNK、_PAD seq2seq模型特殊标记,填充标记对话。_GO标记对话开始。_EOS标记对话结束。_UNK标记未出现词汇表字符,替换稀有词汇。_PAD填充序列,保证批次序列长度相同。转换成ids文件,test.enc.ids20000、train.dec.ids20000、train.enc.ids20000。问句、答句转换ids文件,每行是一个问句或答句,每行每个id代表问句或答句对应位置词。


采用编码器-解码器框架训练。


定义训练参数。seq2seq.ini。



[strings]

# Mode : train, test, serve 模式

mode = train

train_enc = data/train.enc

train_dec = data/train.dec

test_enc = data/test.enc

test_dec = data/test.dec

# folder where checkpoints, vocabulary, temporary data will be stored

# 模型文件和词汇表存储路径

working_directory = working_dir/

[ints]

# vocabulary size

# 词汇表大小

# 20,000 is a reasonable size

enc_vocab_size = 20000

dec_vocab_size = 20000

# number of LSTM layers : 1/2/3

# LSTM层数

num_layers = 3

# typical options : 128, 256, 512, 1024 每层大小,可取值

layer_size = 256

# dataset size limit; typically none : no limit

max_train_data_size = 0

batch_size = 64

# steps per checkpoint

# 每多少次迭代存储一次模型

# Note : At a checkpoint, models parameters are saved, model is evaluated

# and results are printed

steps_per_checkpoint = 300

[floats]

learning_rate = 0.5 # 学习速率

learning_rate_decay_factor = 0.99 # 学习速率下降系数

max_gradient_norm = 5.0



定义网络模型 seq2seq。seq2seq_model.py。TensorFlow 0.12。定义seq2seq+Attention模型类,3个函数。《Grammar as a Foreign Language》 http://arxiv.org/abs/1412.7499 。初始化模型函数(__init__)、训练模型函数(step)、获取下一批次训练数据函数(get_batch)。


from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import random

import numpy as np

from six.moves import xrange  # pylint: disable=redefined-builtin

import tensorflow as tf

from tensorflow.models.rnn.translate import data_utils

class Seq2SeqModel(object):

  def __init__(self, source_vocab_size, target_vocab_size, buckets, size,

               num_layers, max_gradient_norm, batch_size, learning_rate,

               learning_rate_decay_factor, use_lstm=False,

               num_samples=512, forward_only=False):

    """ 构建模型

    Args: 参数

      source_vocab_size: size of the source vocabulary. 问句词汇表大小

      target_vocab_size: size of the target vocabulary.答句词汇表大小

      buckets: a list of pairs (I, O), where I specifies maximum input length

        that will be processed in that bucket, and O specifies maximum output

        length. Training instances that have inputs longer than I or outputs

        longer than O will be pushed to the next bucket and padded accordingly.

        We assume that the list is sorted, e.g., [(2, 4), (8, 16)].

        其中I指定最大输入长度,O指定最大输出长度

      size: number of units in each layer of the model.每层神经元数量

      num_layers: number of layers in the model.模型层数

      max_gradient_norm: gradients will be clipped to maximally this norm.梯度被削减到最大规范

      batch_size: the size of the batches used during training;

        the model construction is independent of batch_size, so it can be

        changed after initialization if this is convenient, e.g., for decoding.批次大小。训练、预测批次大小,可不同

      learning_rate: learning rate to start with.学习速率

      learning_rate_decay_factor: decay learning rate by this much when needed.调整学习速率

      use_lstm: if true, we use LSTM cells instead of GRU cells.使用LSTM 单元代替GRU单元

      num_samples: number of samples for sampled softmax.使用softmax样本数

      forward_only: if set, we do not construct the backward pass in the model.是否仅构建前向传播

    """

    self.source_vocab_size = source_vocab_size

    self.target_vocab_size = target_vocab_size

    self.buckets = buckets

    self.batch_size = batch_size

    self.learning_rate = tf.Variable(float(learning_rate), trainable=False)

    self.learning_rate_decay_op = self.learning_rate.assign(

        self.learning_rate * learning_rate_decay_factor)

    self.global_step = tf.Variable(0, trainable=False)

    # If we use sampled softmax, we need an output projection.

    output_projection = None

    softmax_loss_function = None

    # Sampled softmax only makes sense if we sample less than vocabulary size.

    # 如果样本量比词汇表量小,用抽样softmax

    if num_samples > 0 and num_samples < self.target_vocab_size:

      w = tf.get_variable("proj_w", [size, self.target_vocab_size])

      w_t = tf.transpose(w)

      b = tf.get_variable("proj_b", [self.target_vocab_size])

      output_projection = (w, b)

      def sampled_loss(inputs, labels):

        labels = tf.reshape(labels, [-1, 1])

        return tf.nn.sampled_softmax_loss(w_t, b, inputs, labels, num_samples,

                self.target_vocab_size)

      softmax_loss_function = sampled_loss

    # Create the internal multi-layer cell for our RNN.

    # 构建RNN

    single_cell = tf.nn.rnn_cell.GRUCell(size)

    if use_lstm:

      single_cell = tf.nn.rnn_cell.BasicLSTMCell(size)

    cell = single_cell

    cell = tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob=0.5)

    if num_layers > 1:

      cell = tf.nn.rnn_cell.MultiRNNCell([single_cell] * num_layers)

    

    # The seq2seq function: we use embedding for the input and attention.

    # Attention模型

    def seq2seq_f(encoder_inputs, decoder_inputs, do_decode):

      return tf.nn.seq2seq.embedding_attention_seq2seq(

          encoder_inputs, decoder_inputs, cell,

          num_encoder_symbols=source_vocab_size,

          num_decoder_symbols=target_vocab_size,

          embedding_size=size,

          output_projection=output_projection,

          feed_previous=do_decode)

    # Feeds for inputs.

    # 给模型填充数据

    self.encoder_inputs = []

    self.decoder_inputs = []

    self.target_weights = []

    for i in xrange(buckets[-1][0]):  # Last bucket is the biggest one.

      self.encoder_inputs.append(tf.placeholder(tf.int32, shape=[None],

                                                name="encoder{0}".format(i)))

    for i in xrange(buckets[-1][1] + 1):

      self.decoder_inputs.append(tf.placeholder(tf.int32, shape=[None],

                                                name="decoder{0}".format(i)))

      self.target_weights.append(tf.placeholder(tf.float32, shape=[None],

                                                name="weight{0}".format(i)))

    # Our targets are decoder inputs shifted by one.

    # targets值是解码器偏移1位

    targets = [self.decoder_inputs[i + 1]

               for i in xrange(len(self.decoder_inputs) - 1)]

    # Training outputs and losses.

    # 训练模型输出

    if forward_only:

      self.outputs, self.losses = tf.nn.seq2seq.model_with_buckets(

          self.encoder_inputs, self.decoder_inputs, targets,

          self.target_weights, buckets, lambda x, y: seq2seq_f(x, y, True),

          softmax_loss_function=softmax_loss_function)

      # If we use output projection, we need to project outputs for decoding.

      if output_projection is not None:

        for b in xrange(len(buckets)):

          self.outputs[b] = [

              tf.matmul(output, output_projection[0]) + output_projection[1]

              for output in self.outputs[b]

          ]

    else:

      self.outputs, self.losses = tf.nn.seq2seq.model_with_buckets(

          self.encoder_inputs, self.decoder_inputs, targets,

          self.target_weights, buckets,

          lambda x, y: seq2seq_f(x, y, False),

          softmax_loss_function=softmax_loss_function)

    # Gradients and SGD update operation for training the model.

    # 训练模型,更新梯度

    params = tf.trainable_variables()

    if not forward_only:

      self.gradient_norms = []

      self.updates = []

      opt = tf.train.AdamOptimizer()

      for b in xrange(len(buckets)):

        gradients = tf.gradients(self.losses[b], params)

        clipped_gradients, norm = tf.clip_by_global_norm(gradients,

                                                         max_gradient_norm)

        self.gradient_norms.append(norm)

        self.updates.append(opt.apply_gradients(

            zip(clipped_gradients, params), global_step=self.global_step))

    self.saver = tf.train.Saver(tf.global_variables())

  def step(self, session, encoder_inputs, decoder_inputs, target_weights,

           bucket_id, forward_only):

    """Run a step of the model feeding the given inputs.

    定义运行模型的每一步

    Args:

      session: tensorflow session to use.

      encoder_inputs: list of numpy int vectors to feed as encoder inputs.问句向量序列

      decoder_inputs: list of numpy int vectors to feed as decoder inputs.答句向量序列

      target_weights: list of numpy float vectors to feed as target weights.

      bucket_id: which bucket of the model to use.输入bucket_id

      forward_only: whether to do the backward step or only forward.是否只做前向传播

    Returns:

      A triple consisting of gradient norm (or None if we did not do backward),

      average perplexity, and the outputs.

    Raises:

      ValueError: if length of encoder_inputs, decoder_inputs, or

        target_weights disagrees with bucket size for the specified bucket_id.

    """

    # Check if the sizes match.

    encoder_size, decoder_size = self.buckets[bucket_id]

    if len(encoder_inputs) != encoder_size:

      raise ValueError("Encoder length must be equal to the one in bucket,"

                       " %d != %d." % (len(encoder_inputs), encoder_size))

    if len(decoder_inputs) != decoder_size:

      raise ValueError("Decoder length must be equal to the one in bucket,"

                       " %d != %d." % (len(decoder_inputs), decoder_size))

    if len(target_weights) != decoder_size:

      raise ValueError("Weights length must be equal to the one in bucket,"

                       " %d != %d." % (len(target_weights), decoder_size))

    # Input feed: encoder inputs, decoder inputs, target_weights, as provided.

    # 输入填充

    input_feed = {}

    for l in xrange(encoder_size):

      input_feed[self.encoder_inputs[l].name] = encoder_inputs[l]

    for l in xrange(decoder_size):

      input_feed[self.decoder_inputs[l].name] = decoder_inputs[l]

      input_feed[self.target_weights[l].name] = target_weights[l]

    # Since our targets are decoder inputs shifted by one, we need one more.

    last_target = self.decoder_inputs[decoder_size].name

    input_feed[last_target] = np.zeros([self.batch_size], dtype=np.int32)

    # Output feed: depends on whether we do a backward step or not.

    # 输出填充:与是否有后向传播有关

    if not forward_only:

      output_feed = [self.updates[bucket_id],  # Update Op that does SGD.

                     self.gradient_norms[bucket_id],  # Gradient norm.

                     self.losses[bucket_id]]  # Loss for this batch.

    else:

      output_feed = [self.losses[bucket_id]]  # Loss for this batch.

      for l in xrange(decoder_size):  # Output logits.

        output_feed.append(self.outputs[bucket_id][l])

    outputs = session.run(output_feed, input_feed)

    if not forward_only:

      return outputs[1], outputs[2], None  # Gradient norm, loss, no outputs.有后向传播输出,梯度、损失值、None

    else:

      return None, outputs[0], outputs[1:]  # No gradient norm, loss, outputs.仅有前向传播输出,None,损失值,None

  def get_batch(self, data, bucket_id):

    """

    从指定桶获取一个批次随机数据,在训练每步(step)使用

    Args:参数

      data: a tuple of size len(self.buckets) in which each element contains

        lists of pairs of input and output data that we use to create a batch.长度为(self.buckets)元组,每个元素包含创建批次输入、输出数据对列表

      bucket_id: integer, which bucket to get the batch for.整数,从哪个bucket获取批次

    Returns:返回

      The triple (encoder_inputs, decoder_inputs, target_weights) for

      the constructed batch that has the proper format to call step(...) later.一个包含三项元组(encoder_inputs, decoder_inputs, target_weights)

    """

    encoder_size, decoder_size = self.buckets[bucket_id]

    encoder_inputs, decoder_inputs = [], []

    # Get a random batch of encoder and decoder inputs from data,

    # pad them if needed, reverse encoder inputs and add GO to decoder.

    for _ in xrange(self.batch_size):

      encoder_input, decoder_input = random.choice(data[bucket_id])

      # Encoder inputs are padded and then reversed.

      encoder_pad = [data_utils.PAD_ID] * (encoder_size - len(encoder_input))

      encoder_inputs.append(list(reversed(encoder_input + encoder_pad)))

      # Decoder inputs get an extra "GO" symbol, and are padded then.

      decoder_pad_size = decoder_size - len(decoder_input) - 1

      decoder_inputs.append([data_utils.GO_ID] + decoder_input +

                            [data_utils.PAD_ID] * decoder_pad_size)

    # Now we create batch-major vectors from the data selected above.

    batch_encoder_inputs, batch_decoder_inputs, batch_weights = [], [], []

    # Batch encoder inputs are just re-indexed encoder_inputs.

    for length_idx in xrange(encoder_size):

      batch_encoder_inputs.append(

          np.array([encoder_inputs[batch_idx][length_idx]

                    for batch_idx in xrange(self.batch_size)], dtype=np.int32))

    # Batch decoder inputs are re-indexed decoder_inputs, we create weights.

    for length_idx in xrange(decoder_size):

      batch_decoder_inputs.append(

          np.array([decoder_inputs[batch_idx][length_idx]

                    for batch_idx in xrange(self.batch_size)], dtype=np.int32))

      # Create target_weights to be 0 for targets that are padding.

      batch_weight = np.ones(self.batch_size, dtype=np.float32)

      for batch_idx in xrange(self.batch_size):

        # We set weight to 0 if the corresponding target is a PAD symbol.

        # The corresponding target is decoder_input shifted by 1 forward.

        if length_idx < decoder_size - 1:

          target = decoder_inputs[batch_idx][length_idx + 1]

        if length_idx == decoder_size - 1 or target == data_utils.PAD_ID:

          batch_weight[batch_idx] = 0.0

      batch_weights.append(batch_weight)

    return batch_encoder_inputs, batch_decoder_inputs, batch_weights



训练模型。修改seq2seq.ini文件mode值“train”,execute.py训练。

验证模型。修改seq2seq.ini文件mode值“test”,execute.py测试。



from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import math

import os

import random

import sys

import time

import numpy as np

from six.moves import xrange  # pylint: disable=redefined-builtin

import tensorflow as tf

import data_utils

import seq2seq_model

try:

    from ConfigParser import SafeConfigParser

except:

    from configparser import SafeConfigParser # In Python 3, ConfigParser has been renamed to configparser for PEP 8 compliance.

gConfig = {}

def get_config(config_file='seq2seq.ini'):

    parser = SafeConfigParser()

    parser.read(config_file)

    # get the ints, floats and strings

    _conf_ints = [ (key, int(value)) for key,value in parser.items('ints') ]

    _conf_floats = [ (key, float(value)) for key,value in parser.items('floats') ]

    _conf_strings = [ (key, str(value)) for key,value in parser.items('strings') ]

    return dict(_conf_ints + _conf_floats + _conf_strings)

# We use a number of buckets and pad to the closest one for efficiency.

# See seq2seq_model.Seq2SeqModel for details of how they work.

_buckets = [(5, 10), (10, 15), (20, 25), (40, 50)]

def read_data(source_path, target_path, max_size=None):

  """Read data from source and target files and put into buckets.

  Args:

    source_path: path to the files with token-ids for the source language.

    target_path: path to the file with token-ids for the target language;

      it must be aligned with the source file: n-th line contains the desired

      output for n-th line from the source_path.

    max_size: maximum number of lines to read, all other will be ignored;

      if 0 or None, data files will be read completely (no limit).

  Returns:

    data_set: a list of length len(_buckets); data_set[n] contains a list of

      (source, target) pairs read from the provided data files that fit

      into the n-th bucket, i.e., such that len(source) < _buckets[n][0] and

      len(target) < _buckets[n][1]; source and target are lists of token-ids.

  """

  data_set = [[] for _ in _buckets]

  with tf.gfile.GFile(source_path, mode="r") as source_file:

    with tf.gfile.GFile(target_path, mode="r") as target_file:

      source, target = source_file.readline(), target_file.readline()

      counter = 0

      while source and target and (not max_size or counter < max_size):

        counter += 1

        if counter % 100000 == 0:

          print("  reading data line %d" % counter)

          sys.stdout.flush()

        source_ids = [int(x) for x in source.split()]

        target_ids = [int(x) for x in target.split()]

        target_ids.append(data_utils.EOS_ID)

        for bucket_id, (source_size, target_size) in enumerate(_buckets):

          if len(source_ids) < source_size and len(target_ids) < target_size:

            data_set[bucket_id].append([source_ids, target_ids])

            break

        source, target = source_file.readline(), target_file.readline()

  return data_set

def create_model(session, forward_only):

  """Create model and initialize or load parameters"""

  model = seq2seq_model.Seq2SeqModel( gConfig['enc_vocab_size'], gConfig['dec_vocab_size'], _buckets, gConfig['layer_size'], gConfig['num_layers'], gConfig['max_gradient_norm'], gConfig['batch_size'], gConfig['learning_rate'], gConfig['learning_rate_decay_factor'], forward_only=forward_only)

  if 'pretrained_model' in gConfig:

      model.saver.restore(session,gConfig['pretrained_model'])

      return model

  ckpt = tf.train.get_checkpoint_state(gConfig['working_directory'])

  if ckpt and ckpt.model_checkpoint_path:

    print("Reading model parameters from %s" % ckpt.model_checkpoint_path)

    model.saver.restore(session, ckpt.model_checkpoint_path)

  else:

    print("Created model with fresh parameters.")

    session.run(tf.global_variables_initializer())

  return model

def train():

  # prepare dataset

  # 准备数据集

  print("Preparing data in %s" % gConfig['working_directory'])

  enc_train, dec_train, enc_dev, dec_dev, _, _ = data_utils.prepare_custom_data(gConfig['working_directory'],gConfig['train_enc'],gConfig['train_dec'],gConfig['test_enc'],gConfig['test_dec'],gConfig['enc_vocab_size'],gConfig['dec_vocab_size'])

  # setup config to use BFC allocator

  config = tf.ConfigProto()

  config.gpu_options.allocator_type = 'BFC'

  with tf.Session(config=config) as sess:

    # Create model.

    # 构建模型

    print("Creating %d layers of %d units." % (gConfig['num_layers'], gConfig['layer_size']))

    model = create_model(sess, False)

    # Read data into buckets and compute their sizes.

    # 把数据读入桶(bucket)中,计算桶大小

    print ("Reading development and training data (limit: %d)."

           % gConfig['max_train_data_size'])

    dev_set = read_data(enc_dev, dec_dev)

    train_set = read_data(enc_train, dec_train, gConfig['max_train_data_size'])

    train_bucket_sizes = [len(train_set[b]) for b in xrange(len(_buckets))]

    train_total_size = float(sum(train_bucket_sizes))

    # A bucket scale is a list of increasing numbers from 0 to 1 that we'll use

    # to select a bucket. Length of [scale[i], scale[i+1]] is proportional to

    # the size if i-th training bucket, as used later.

    train_buckets_scale = [sum(train_bucket_sizes[:i + 1]) / train_total_size

                           for i in xrange(len(train_bucket_sizes))]

    # This is the training loop.

    # 开始训练循环

    step_time, loss = 0.0, 0.0

    current_step = 0

    previous_losses = []

    while True:

      # Choose a bucket according to data distribution. We pick a random number

      # in [0, 1] and use the corresponding interval in train_buckets_scale.

      # 随机生成一个0-1数,在生成bucket_id中使用

      random_number_01 = np.random.random_sample()

      bucket_id = min([i for i in xrange(len(train_buckets_scale))

                       if train_buckets_scale[i] > random_number_01])

      # Get a batch and make a step.

      # 获取一个批次数据,进行一步训练

      start_time = time.time()

      encoder_inputs, decoder_inputs, target_weights = model.get_batch(

          train_set, bucket_id)

      _, step_loss, _ = model.step(sess, encoder_inputs, decoder_inputs,

                                   target_weights, bucket_id, False)

      step_time += (time.time() - start_time) / gConfig['steps_per_checkpoint']

      loss += step_loss / gConfig['steps_per_checkpoint']

      current_step += 1

      # Once in a while, we save checkpoint, print statistics, and run evals.

      # 保存检查点文件,打印统计数据

      if current_step % gConfig['steps_per_checkpoint'] == 0:

        # Print statistics for the previous epoch.

        perplexity = math.exp(loss) if loss < 300 else float('inf')

        print ("global step %d learning rate %.4f step-time %.2f perplexity "

               "%.2f" % (model.global_step.eval(), model.learning_rate.eval(),

                         step_time, perplexity))

        # Decrease learning rate if no improvement was seen over last 3 times.

        # 如果损失值在最近3次内没有再降低,减小学习率

        if len(previous_losses) > 2 and loss > max(previous_losses[-3:]):

          sess.run(model.learning_rate_decay_op)

        previous_losses.append(loss)

        # Save checkpoint and zero timer and loss.

        # 保存检查点文件,计数器、损失值归零

        checkpoint_path = os.path.join(gConfig['working_directory'], "seq2seq.ckpt")

        model.saver.save(sess, checkpoint_path, global_step=model.global_step)

        step_time, loss = 0.0, 0.0

        # Run evals on development set and print their perplexity.

        for bucket_id in xrange(len(_buckets)):

          if len(dev_set[bucket_id]) == 0:

            print("  eval: empty bucket %d" % (bucket_id))

            continue

          encoder_inputs, decoder_inputs, target_weights = model.get_batch(

              dev_set, bucket_id)

          _, eval_loss, _ = model.step(sess, encoder_inputs, decoder_inputs,

                                       target_weights, bucket_id, True)

          eval_ppx = math.exp(eval_loss) if eval_loss < 300 else float('inf')

          print("  eval: bucket %d perplexity %.2f" % (bucket_id, eval_ppx))

        sys.stdout.flush()

def decode():

  with tf.Session() as sess:

    # Create model and load parameters.

    # 建立模型,定义超参数batch_size

    model = create_model(sess, True)

    model.batch_size = 1  # We decode one sentence at a time.一次只解码一个句子

    # Load vocabularies.

    # 加载词汇表文件

    enc_vocab_path = os.path.join(gConfig['working_directory'],"vocab%d.enc" % gConfig['enc_vocab_size'])

    dec_vocab_path = os.path.join(gConfig['working_directory'],"vocab%d.dec" % gConfig['dec_vocab_size'])

    enc_vocab, _ = data_utils.initialize_vocabulary(enc_vocab_path)

    _, rev_dec_vocab = data_utils.initialize_vocabulary(dec_vocab_path)

    # Decode from standard input.

    # 对标准输入句子解码

    sys.stdout.write("> ")

    sys.stdout.flush()

    sentence = sys.stdin.readline()

    while sentence:

      # Get token-ids for the input sentence.

      # 得到输入句子的token-ids

      token_ids = data_utils.sentence_to_token_ids(tf.compat.as_bytes(sentence), enc_vocab)

      # Which bucket does it belong to?

      # 计算token_ids属于哪个桶(bucket)

      bucket_id = min([b for b in xrange(len(_buckets))

                       if _buckets[b][0] > len(token_ids)])

      # Get a 1-element batch to feed the sentence to the model.

      # 句子送入模型

      encoder_inputs, decoder_inputs, target_weights = model.get_batch(

          {bucket_id: [(token_ids, [])]}, bucket_id)

      # Get output logits for the sentence.

      _, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs,

                                       target_weights, bucket_id, True)

      # This is a greedy decoder - outputs are just argmaxes of output_logits.

      # 贪心解码器,输出output_logits argmaxes

      outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]

      # If there is an EOS symbol in outputs, cut them at that point.

      if data_utils.EOS_ID in outputs:

        outputs = outputs[:outputs.index(data_utils.EOS_ID)]

      # Print out French sentence corresponding to outputs.

      # 打印与输出句子对应法语句子

      print(" ".join([tf.compat.as_str(rev_dec_vocab[output]) for output in outputs]))

      print("> ", end="")

      sys.stdout.flush()

      sentence = sys.stdin.readline()

def self_test():

  """Test the translation model."""

  with tf.Session() as sess:

    print("Self-test for neural translation model.")

    # Create model with vocabularies of 10, 2 small buckets, 2 layers of 32.

    model = seq2seq_model.Seq2SeqModel(10, 10, [(3, 3), (6, 6)], 32, 2,

                                       5.0, 32, 0.3, 0.99, num_samples=8)

    sess.run(tf.initialize_all_variables())

    # Fake data set for both the (3, 3) and (6, 6) bucket.

    data_set = ([([1, 1], [2, 2]), ([3, 3], [4]), ([5], [6])],

                [([1, 1, 1, 1, 1], [2, 2, 2, 2, 2]), ([3, 3, 3], [5, 6])])

    for _ in xrange(5):  # Train the fake model for 5 steps.

      bucket_id = random.choice([0, 1])

      encoder_inputs, decoder_inputs, target_weights = model.get_batch(

          data_set, bucket_id)

      model.step(sess, encoder_inputs, decoder_inputs, target_weights,

                 bucket_id, False)

def init_session(sess, conf='seq2seq.ini'):

    global gConfig

    gConfig = get_config(conf)

    # Create model and load parameters.

    model = create_model(sess, True)

    model.batch_size = 1  # We decode one sentence at a time.

    # Load vocabularies.

    enc_vocab_path = os.path.join(gConfig['working_directory'],"vocab%d.enc" % gConfig['enc_vocab_size'])

    dec_vocab_path = os.path.join(gConfig['working_directory'],"vocab%d.dec" % gConfig['dec_vocab_size'])

    enc_vocab, _ = data_utils.initialize_vocabulary(enc_vocab_path)

    _, rev_dec_vocab = data_utils.initialize_vocabulary(dec_vocab_path)

    return sess, model, enc_vocab, rev_dec_vocab

def decode_line(sess, model, enc_vocab, rev_dec_vocab, sentence):

    # Get token-ids for the input sentence.

    token_ids = data_utils.sentence_to_token_ids(tf.compat.as_bytes(sentence), enc_vocab)

    # Which bucket does it belong to?

    bucket_id = min([b for b in xrange(len(_buckets)) if _buckets[b][0] > len(token_ids)])

    # Get a 1-element batch to feed the sentence to the model.

    encoder_inputs, decoder_inputs, target_weights = model.get_batch({bucket_id: [(token_ids, [])]}, bucket_id)

    # Get output logits for the sentence.

    _, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, True)

    # This is a greedy decoder - outputs are just argmaxes of output_logits.

    outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]

    # If there is an EOS symbol in outputs, cut them at that point.

    if data_utils.EOS_ID in outputs:

        outputs = outputs[:outputs.index(data_utils.EOS_ID)]

    return " ".join([tf.compat.as_str(rev_dec_vocab[output]) for output in outputs])

if __name__ == '__main__':

    if len(sys.argv) - 1:

        gConfig = get_config(sys.argv[1])

    else:

        # get configuration from seq2seq.ini

        gConfig = get_config()

    print('\n>> Mode : %s\n' %(gConfig['mode']))

    if gConfig['mode'] == 'train':

        # start training

        train()

    elif gConfig['mode'] == 'test':

        # interactive decode

        decode()

    else:

        # wrong way to execute "serve"

        #   Use : >> python ui/app.py

        #           uses seq2seq_serve.ini as conf file

        print('Serve Usage : >> python ui/app.py')

        print('# uses seq2seq_serve.ini as conf file')



基于文字智能机器人,结合语音识别,产生直接对话机器人。系统架构:

人->语音识别(ASR)->自然语言理解(NLU)->对话管理->自然语言生成(NLG)->语音合成(TTS)->人。《中国人工智能学会通讯》2016年第6卷第1期。


图灵机器人公司,提高对话和语义准确度,提升中文语境智能程度。竹间智能科技,研究记忆、自学习情感机器人,机器人真正理解多模式多渠道信息,高度拟人化回应,最理想自然语言交流模式交流。腾讯公司,社交对话数据。微信,最庞大自然语言交流语料库,利用庞大真实数据,结合小程序成为所有服务入口。


参考资料:

《TensorFlow技术解析与实战》


欢迎推荐上海机器学习工作机会我的微信:qingxingfengzi


人工智能工作机会分割线-----------------------------------------

杭州阿里 新零售淘宝基础架构平台:移动AI高级专家

以上是关于学习笔记TF059:自然语言处理智能聊天机器人的主要内容,如果未能解决你的问题,请参考以下文章

ChatGPT OpenAI 人工智能语言处理工具

使用chatGPT聊天:一种全新的人工智能体验

中文NLP笔记:13 用 Keras 实现一个简易聊天机器人

我用Python轻松玩转ChatGPT的聊天机器人和AI画画

使用机器学习算法在 .NET Core 中运行的 100% C# 开源 AI 聊天机器人平台构建器...

ChatGPT 多个可用的聊天机器人