数据结构二叉排序树(Binary Sort Tree)(建立插入删除)

Posted 数据结构与算法

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据结构二叉排序树(Binary Sort Tree)(建立插入删除)相关的知识,希望对你有一定的参考价值。


二叉排序树定义


二叉排序树(Binary Sort Tree),又称二叉查找树。它是一颗空树,或者具有下列性质:


  • 若它的左子树不为空,则左子树上所有结点的值均小于它的根结点的值;

  • 若它的右子树不为空,则右子树上所有结点的值均大于它的根结点的值;

  • 它的左、右子树分别为二叉排序树。


    【数据结构】二叉排序树(Binary Sort Tree)(建立、插入、删除)


【数据结构】二叉排序树(Binary Sort Tree)(建立、插入、删除)构造二叉排序树的目的


提高查找和插入删除关键字的速度。


【数据结构】二叉排序树(Binary Sort Tree)(建立、插入、删除)一、二叉排序树的查找


二叉排序树的查找可以用递归来实现;


先将要查找的关键字和根节点进行比较;


若和根节点值相同,则返回根节点值;若比根节点小,就递归查找左子树,若比根节点大,则递归查找右子树。


【数据结构】二叉排序树(Binary Sort Tree)(建立、插入、删除)二叉排序树的查找代码实现


#define TRUE 1
#define FALSE 0
#define  MAXSIZE 100

typedef struct BiTNode{// 二叉树的儿二叉链表结点结构

    int data; // 结点结构
    struct BiTNode * lchild,* rchild;  // 左右孩子指针

}BiTNode, * BiTree;

/**
 * 递归查找二叉排序树 T 中是否存在 key
 * 指针 f 指向 T 的 双亲,其初始调用值为NULL
 * 若查找成功,则指针 p 指向该数据元素结点,并返回TRUE
 * 若查找不成功, 则指针 p 指向查找路径上访问的最后一个结点并返回FALSE
 */

int SearchBST(BiTree T, int key, BiTree f, BiTree *p){

    if (!T) {  // 查找不成功
        *p = f;
        return FALSE;

    }else if (key == T->data){

        *p = T;
        return TRUE;

    }else if (key < T->data){  // 在左子树中继续查找

        return SearchBST(T->lchild, key, T, p);

    }else{  // 在右子树中鸡血查找

        return SearchBST(T->rchild, key, T, p);
    }
}


【数据结构】二叉排序树(Binary Sort Tree)(建立、插入、删除)二、二叉排序树的插入操作


先调用查找操作将要插入的关键字进行比较

如果在原有的二叉排序树中没有要插入的关键字,则将关键字与查找的结点p(在查找操作中返回的结点)的值进行比较

若p为空,则插入关键字赋值给该节点


若小于结点p的值,则插入关键字作为结点p的左子树;

若大于结点p的值,则插入关键字作为结点p的右子树;


【数据结构】二叉排序树(Binary Sort Tree)(建立、插入、删除)二叉排序树的插入操作代码实现


/**
 * 二叉排序树的插入
 * 当二叉排序树中不存在关键字等于 key 的数据元素时,插入 key 并返回TRUE
 */

int InsertBST(BiTree * T, int key){

    BiTree p,s;

    if (!SearchBST( *T, key, NULL, &p)) {  // 没找到key

        s = (BiTree)malloc(sizeof(BiTNode));
        s->data = key;
        s->lchild = s->rchild = NULL;

        if (!p)
            *T = s;  // 插入 s 为新的根结点
        else if (key < p->data)
            p->lchild = s;  //插入 s 为左孩子
        else
            p->rchild = s; // 插入 s 为右孩子

        return TRUE;
    }else
        return FALSE;
}


【数据结构】二叉排序树(Binary Sort Tree)(建立、插入、删除)三、二叉排序树的删除操作


二叉排序树的删除操作相对复杂,因为不能因为删除了结点,让这颗二叉排序树变得不满足二叉排序树的性质,所以对于二叉排序树的删除存在三种情况:


  • 叶子结点;(很容易实现删除操作,直接删除结点即可)

  • 仅有左或者右子树的结点;(容易实现删除操作,删除结点后,将它的左子树或者右子树整个移动到删除结点的位置)

  • 左右子树都有的结点。(实现删除操作很复杂)

【数据结构】二叉排序树(Binary Sort Tree)(建立、插入、删除)对于要删除的结点同时存在左右子树的情况的解决办法


核心思想


将它的直接前驱或者直接后继作为删除结点的数据


【数据结构】二叉排序树(Binary Sort Tree)(建立、插入、删除)实现方法


  • 如图,要删除的结点为47

  • 47的直接前驱是37,直接后继是48

  • 如果用直接前驱37作为删除后结点的值,(由于结点37有一个左子树)那么(左子树)36就去替换到37结点上。

  • 如果用直接后继47作为删除后结点的值,(由于结点47是叶子结点)那么直接将48替换到37结点上即可。


    【数据结构】二叉排序树(Binary Sort Tree)(建立、插入、删除)

    【数据结构】二叉排序树(Binary Sort Tree)(建立、插入、删除)


【数据结构】二叉排序树(Binary Sort Tree)(建立、插入、删除)二叉排序树的删除操作代码实现


/**
 * 从二叉排序树中删除结点 p , 并重接它的左/右子树
 */

int Delete(BiTree *p){

    BiTree q, s;

    if ((*p)->rchild == NULL) {  // 右子树空 则只需要重接它的左子树

        q = *p;
        *p = (*p)->lchild;
        free(q);

    }else if ((*p)->lchild == NULL){  // 左子树空 则只需要重接它的右子树

        q = *p;
        *p = (*p)->rchild;
        free(q);

    }else{  // 左右子树都不空

        q = *p;
        s = (*p)->lchild;

        while (s->rchild) {  // 向右到尽头,找到待删结点的前驱

            q = s;
            s = s->rchild;
        }

        (*p)->data = s->data;  // s 指向被删除结点的直接前驱 (将被删结点前驱的值取代被删结点的值)

        if (q != *p)
            q->rchild = s->lchild;  // 重接 q 的右子树
        else
            q->lchild = s->lchild;  // 重接 q 的左子树

        free(s);
    }

    return TRUE;
}

/**
 * 二叉排序树的删除
 * 当二叉排序树中存在关键字等于 key 的数据元素时,删除该数据元素并返回TRUE
 */

int DeleteBST(BiTree * T, int key){

    if (!*T)   // 不存在关键字等于 key 的元素
        return FALSE;
    else{

        if (key == (*T)->data)
            return Delete(T);
        else if (key < (*T)->data)
            return DeleteBST(&(*T)->lchild, key);
        else
            return DeleteBST(&(*T)->rchild, key);
    }
}


【数据结构】二叉排序树(Binary Sort Tree)(建立、插入、删除)四、测试代码


对于二叉排序树的建立,可以通过二叉排序树的插入操作来实现。


通过中序遍历二叉排序树,结果是从小到大输出。


/**
 * 中序递归遍历
 */

void InOrderTraverse(BiTree T){

    if (!T)
        return;

    InOrderTraverse(T->lchild);
    printf("%d ", T->data);
    InOrderTraverse(T->rchild);
}


int main(int argc, const char * argv[]) {

    int i;
    int a[10] ={62,88,58,47,35,73,51,99,37,93};

    BiTree T = NULL;
    for (i = 0; i < 10; i++) {  // 通过插入操作来构建二叉排序树
        InsertBST(&T, a[i]);
    }

    printf("中序递归遍历二叉排序树: ");
    InOrderTraverse(T);
    printf(" ");

    DeleteBST(&T, 93);
    printf("删除结点 93 后的结果为: ");
    InOrderTraverse(T);
    printf(" ");

    printf("插入 91 后的结果为: ");
    InsertBST(&T, 91);
    InOrderTraverse(T);
    printf(" ");

    return 0;
}


【数据结构】二叉排序树(Binary Sort Tree)(建立、插入、删除)


二叉排序树总结


二叉排序树是以链接的方式存储,保持了链接存储结构在执行插入或删除操作时不用移动元素的优点。只要找到合适的插入和删除位置后,仅需要修改链接指针即可。插入删除的时间性能比较好。

对于二叉排序树的查找,走的是根结点到要查找结点的路径,其比较次数等于给定值的结点在二叉排序树的层次。


 推荐↓↓↓ 

以上是关于数据结构二叉排序树(Binary Sort Tree)(建立插入删除)的主要内容,如果未能解决你的问题,请参考以下文章

Python描述数据结构之二叉排序树篇

创建二叉树( 二叉排序树(Binary Sort Tree))

高级数据结构(Ⅳ)二叉查找树(BST,Binary Sort Tree)

二叉树排序树的创建

自平衡二叉(查找树/搜索树/排序树) binary search tree

高阶数据结构 | 二叉搜索树(Binary Search Tree)