数据结构之Heap (Java)
Posted Java笔记虾
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据结构之Heap (Java)相关的知识,希望对你有一定的参考价值。
号内回复数据结构,获取整套算法视频
欢迎点击下方阅读原文
Heap简介
Heap译为“堆”,是一种特殊的树形数据结构,它满足所有堆的特性:父节点的值大于等于子节点的值(max heap),或者小于等于子节点的值(min heap)。对于max heap 根节点的值为整个树最大值,反之亦然,min heap 根节点的值为整个树最小值。本文采用Java编程语言简单实现min heap。
Java Heap
对于大多数应用来说,Java堆 (Java Heap) 是Java虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例都在这里分配内存。
根据Java虚拟机规范的规定,Java堆可以处于物理上不连续的内存空间中,只要逻辑上是连续的即可,就像我们的磁盘空间一样。如果在堆中没有内存完成实例分配,并且堆也无法再扩展时,将会抛出OutOfMemoryError异常。
结构示意图
min heap
max heap
结构转换
不像其他的树形结构,例如二叉查找树,采用链表的形式实现,Heap一般用数组实现。这种数组采用自上至下,自左至右的形式从树中添加元素。图2-2展示了如何把图2-1树形结构(不是Heap数据结构)存储到数组中。箭头指向数组中每个元素的直接左孩子和右孩子。
图2-1
图2-2
仅用一个数组是不足以表示一个堆,程序在运行时的操作可能会超过数组的大小。因此我们需要一个更加动态的数据结构,满足以下特性:
我们可以指定数组的初始化大小。
这种数据结构封装了自增算法,当程序需要时,能够增加数组的大小以满足需求。
这会使我们联想起ArrayList的实现,正是采用这种数据结构。本文就采用了ArrayList的自增算法。
因为我们使用数组,我们需要知道如何计算指定节点(index)的父节点、左孩子和右孩子的索引。
parent index : (index - 1) / 2
left child : 2 * index + 1
right child : 2 * index + 2
实现
Insertion
为堆设计一个插入算法很简单,但是我们需要保证每次插入过后,依旧满足堆的顺序。插入算法分为两步:
将元素插入到数组中。
保证数组满足堆的顺序。
对于min heap而言,如果插入插入的元素的value小于父节点的value,则需要交换这两个节点。对于包含新插入节点的每个子树,我们都要做上述检查。时间复杂度为 O (log n)。
对于插入的元素为空值,依据需求可以有不同的算法设计,有时可以认为null比任何非空值小,或者比任何非空值大,本文直接禁止插入空值。图3-1展示了插入值为3,9,12,7和1的元素到min heap的步骤。
图3-1
/**
* @description insertion
* @param element
* @return
*/
public boolean add(E element) {
if(null == element)
return false;
ensureCapacityInternal(size + 1);
elementData[size++] = element;
minHeapify();
return true;
}
private void minHeapify() {
int i = size - 1;
while(i > 0 && compare(elementData[i], elementData[(i-1)/2]) < 0) {
swap(elementData, i, (i-1)/2);
i = (i - 1) / 2;
}
}
Deletion
和插入算法类似,删除一个元素过后要保证数组内的元素依旧满足堆的顺序。删除算法分为三步:
找出待删除元素的索引。
将堆中最后一个元素的值填到待删除元素位置。
验证所有包含被删除元素子树,确保满足堆的顺序。
图3-2展示了删除索引为0的元素的过程。
图3-2
public boolean remove(Object element) {
int index = indexOf(element);
if(index == -1) {
return false;
}
removeInternal(index);
return true;
}
private void removeInternal(int index) {
elementData[index] = elementData[--size];
int left = 2 * index + 1;
int right = 2 * index + 2;
while(left < size && (compare(elementData[index], elementData[left]) > 0
|| compare(elementData[index], elementData[right]) > 0)) {
if(compare(elementData[left], elementData[right]) < 0) {
swap(elementData, index, left);
index = left;
} else {
swap(elementData, index, right);
index = right;
}
left = 2 * index + 1;
right = 2 * index + 2;
}
}
Searching
搜索一个堆,可以顺序遍数组。如果待查找元素不在堆中,则需要遍历所有元素,效率较低。
因为我们表示树的数组是采用自上至下,自左至右的方式从树中获取元素,插入到数组中的,所以可以采用广度优先遍历的方式(breadth first traversal)。根据min heap的属性,父节点的值小于等于孩子节点的值。
如果在查找过程中发现待查找元素不满足条件,可以直接返回-1,表示没有此元素。
/**
* @description index of o
* min-heap properties parents < children breadth first traversal
* @param o
* @return
*/
public int indexOf(Object o) {
int start = 0;
int node = 1;
while(start < size) {
start = node - 1;
int end = start + node;
int count = 0;
while(start < size && start < end) {
if(start == 0) {
if(compare(o, elementData[start]) == 0) {
return start;
} else if(compare(o, elementData[start]) < 0) {
return -1;
}
} else {
if(compare(o, elementData[start]) == 0) {
return start;
} else if (compare(o, elementData[start]) < 0 &&
compare(o, getParent(start)) > 0) {
count++;
}
}
start++;
}
if(count == node) {
return -1;
} else {
node = node * 2;
}
}
return -1;
}
源码:
import java.util.Arrays;
import java.util.Collection;
public class Heap<E extends Comparable<E>> {
private int size; // default 0
private static final int DEFAULT_CAPACITY = 10;
private static final Object[] EMPTY_ELEMENTDATA = {};
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
transient Object[] elementData;
public Heap() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
/**
* @description insertion
* @param element
* @return
*/
public boolean add(E element) {
if(null == element)
return false;
ensureCapacityInternal(size + 1);
elementData[size++] = element;
minHeapify();
return true;
}
private void minHeapify() {
int i = size - 1;
while(i > 0 && compare(elementData[i], elementData[(i-1)/2]) < 0) {
swap(elementData, i, (i-1)/2);
i = (i - 1) / 2;
}
}
public boolean remove(Object element) {
int index = indexOf(element);
if(index == -1) {
return false;
}
removeInternal(index);
return true;
}
public E remove(int index) {
rangeCheck(index);
E oldVal = elementData(index);
removeInternal(index);
return oldVal;
}
public E getParent(int index) {
return elementData(getParentIndex(index));
}
public E getParent(Object child) {
return getParent(indexOf(child));
}
public int getParentIndex(int index) {
positionCheck(index);
return (index - 1) / 2;
}
public E getLeftChild(int index) {
int leftIndex = getLeftChildIndex(index);
return (leftIndex == -1) ? null : elementData(leftIndex);
}
public E getLeftChild(Object o) {
return getLeftChild(indexOf(o));
}
public int getLeftChildIndex(int index) {
rangeCheck(index);
int leftIndex = 2 * index + 1;
return (leftIndex >= size) ? -1 : leftIndex;
}
public E getRightChild(int index) {
int rightIndex = getRightChildIndex(index);
return (rightIndex == -1) ? null : elementData(rightIndex);
}
public E getRightChild(Object o) {
return getRightChild(indexOf(o));
}
public int getRightChildIndex(int index) {
rangeCheck(index);
int rightIndex = 2 * index + 2;
return (rightIndex >= size) ? -1 : rightIndex;
}
private void removeInternal(int index) {
elementData[index] = elementData[--size];
int left = 2 * index + 1;
int right = 2 * index + 2;
while(left < size && (compare(elementData[index], elementData[left]) > 0
|| compare(elementData[index], elementData[right]) > 0)) {
if(compare(elementData[left], elementData[right]) < 0) {
swap(elementData, index, left);
index = left;
} else {
swap(elementData, index, right);
index = right;
}
left = 2 * index + 1;
right = 2 * index + 2;
}
}
public void traverse(Collection<E> container) {
for(int i = 0; i < size; i++) {
container.add(elementData(i));
}
}
/**
* Checks if the given index is in range. If not, throws an appropriate
* runtime exception. This method does *not* check if the index is
* negative: It is always used immediately prior to an array access,
* which throws an ArrayIndexOutOfBoundsException if index is negative.
*/
private void rangeCheck(int index) {
if(index >= size) {
throw new ArrayIndexOutOfBoundsException(outOfBoundsMsg(index));
}
}
private void positionCheck(int index) {
if(index <= 0 || index >= size) {
throw new ArrayIndexOutOfBoundsException(outOfBoundsMsg(index));
}
}
private String outOfBoundsMsg(int index) {
return "Index: " + index + ", Size: " + size;
}
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
@SuppressWarnings("unchecked")
private int compare(Object a, Object b) {
return ((E)a).compareTo((E)b);
}
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
/**
* @description breadth first traversal
* @param o
* @return
*/
public int indexOf(Object o) {
int start = 0;
int node = 1;
while (start < size) {
start = node - 1;
int end = start + node;
int count = 0;
while (start < size && start < end) {
if (start == 0) {
if (compare(o, elementData[start]) == 0) {
return start;
} else if (compare(o, elementData[start]) < 0) {
return -1;
}
} else {
if (compare(o, elementData[start]) == 0) {
return start;
} else if (compare(o, elementData[start]) < 0 && compare(o, getParent(start)) > 0) {
count++;
}
}
start++;
}
if (count == node) {
return -1;
} else {
node = node * 2;
}
}
return -1;
}
public void swap(Object[] o, int a, int b) {
Object t = o[a];
o[a] = o[b];
o[b] = t;
}
public Heap(int initialCapacity) {
if(initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
}else if(initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
}else {
throw new IllegalArgumentException("Illegal Capacity: " + initialCapacity);
}
}
public void ensureCapacity(int minCapacity) {
int minExpend = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) ? 0 : DEFAULT_CAPACITY;
if(minCapacity > minExpend) {
ensureExplicitCapacity(minCapacity);
}
}
private void ensureCapacityInternal(int minCapacity) {
if(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity = Math.max(minCapacity, DEFAULT_CAPACITY);
}
ensureExplicitCapacity(minCapacity);
}
private void ensureExplicitCapacity(int minCapacity) {
if(minCapacity - elementData.length > 0) {
grow(minCapacity);
}
}
public void grow(int minCapacity) {
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if(newCapacity < minCapacity) {
newCapacity = minCapacity;
}
if(newCapacity > MAX_ARRAY_SIZE) {
newCapacity = hugeCapacity(minCapacity);
}
elementData = Arrays.copyOf(elementData, newCapacity);
}
public int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE;
}
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
}
以上是关于数据结构之Heap (Java)的主要内容,如果未能解决你的问题,请参考以下文章