深度优先(DFS)与广度优先搜索(BFS)递归版与非递归版
Posted 张可
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度优先(DFS)与广度优先搜索(BFS)递归版与非递归版相关的知识,希望对你有一定的参考价值。
介绍
最近系统学习算法时发现网上关于这两种算法的文章参差不齐,不太统一,自己也花了点时间总结了一下,现在在这里分享出来。
树的实现
树是一种特殊的有向图,实现方式有很多,我这里用最常见也是最简单的方式来实现:
public class TreeNode<V> {
private V value;
private List<TreeNode<V>> childList;//子节点列表
public TreeNode(V value) {
this.value = value;
}
public TreeNode(V value, List<TreeNode<V>> childList) {
this.value = value;
this.childList = childList;
}
public V getValue() {
return value;
}
public void setValue(V value) {
this.value = value;
}
public List<TreeNode<V>> getChildList() {
return childList;
}
public void setChildList(List<TreeNode<V>> childList) {
this.childList = childList;
}
}
下面基于这种方式实现的树来编写这两种遍历算法。
树的两种遍历算法
关于这两种算法的介绍分析网上实在是太多了,我就不详细说了,直接放代码。
深度优先搜索算法(DFS)
沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。属于盲目搜索。
递归实现
public static <V> void dfs(TreeNode<V> tree, int depth) {
if (tree != null) {
//打印节点值以及深度
System.out.println(tree.getValue().toString() + ", " + depth);
if (tree.getChildList() != null && !tree.getChildList().isEmpty()) {
for (TreeNode<V> item : tree.getChildList()) {
dfs(item, depth + 1);
}
}
}
}
非递归实现
public static <V> void dfsNotRecursive(TreeNode<V> tree) {
if (tree != null) {
//次数之所以用 Map 只是为了保存节点的深度,
//如果没有这个需求可以改为 Stack<TreeNode<V>>
Stack<Map<TreeNode<V>, Integer>> stack = new Stack<>();
Map<TreeNode<V>, Integer> root = new HashMap<>();
root.put(tree, 0);
stack.push(root);
while (!stack.isEmpty()) {
Map<TreeNode<V>, Integer> item = stack.pop();
TreeNode<V> node = item.keySet().iterator().next();
int depth = item.get(node);
//打印节点值以及深度
System.out.println(tree.getValue().toString() + ", " + depth);
if (node.getChildList() != null && !node.getChildList().isEmpty()) {
for (TreeNode<V> treeNode : node.getChildList()) {
Map<TreeNode<V>, Integer> map = new HashMap<>();
map.put(treeNode, depth + 1);
stack.push(map);
}
}
}
}
}
分类
一般来说 DFS 算法又分为如下三种:
1. 前序遍历(Pre-Order Traversal) :指先访问根,然后访问子树的遍历方式
private static <V> void dfs(TreeNode<V> tree, int depth) {
if (d != null) {
//打印节点值以及深度
System.out.println(tree.getValue().toString() + ", " + depth);
if (tree.getChildList() != null && !tree.getChildList().isEmpty()) {
for (TreeNode<V> item : tree.getChildList()) {
dfs(item, depth + 1);
}
}
}
}
2. 后序遍历(Post-Order Traversal):指先访问子树,然后访问根的遍历方式
private static <V> void dfs(TreeNode<V> tree, int depth) {
if (d != null) {
if (tree.getChildList() != null && !tree.getChildList().isEmpty()) {
for (TreeNode<V> item : tree.getChildList()) {
dfs(item, depth + 1);
}
}
//打印节点值以及深度
System.out.println(tree.getValue().toString() + ", " + depth);
}
}
3. 中序遍历(In-Order Traversal):指先访问左(右)子树,然后访问根,最后访问右(左)子树的遍历方式。
中序遍历一般是用二叉树实现:
private static <V> void dfs(TreeNode<V> root, int depth) {
if (root.getLeft() != null){
dfs(root.getLeft(), depth + 1);
}
if (root.getRight() != null){
dfs(root.getRight(), depth + 1);
}
//打印节点值以及深度
System.out.println(d.getValue().toString() + ", " + depth);
}
广度优先搜索算法(Breadth-First Search,BFS)
BFS是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。
递归实现
public static <V> void bfs(List<TreeNode<V>> children, int depth) {
List<TreeNode<V>> thisChildren, allChildren = new ArrayList<>();
for (TreeNode<V> child: children) {
//打印节点值以及深度
System.out.println(child.getValue().toString() + ", " + depth);
thisChildren = child.getChildList();
if (thisChildren != null && thisChildren.size() > 0) {
allChildren.addAll(thisChildren);
}
}
if (allChildren.size() > 0) {
bfs(allChildren, depth + 1);
}
}
递归实现的方式我自己想了好久没想出来,最后还是在网上搜到的算法。
可以看到非递归实现有个问题就是无法遍历根节点,不过问题不大,而且我也还没想出来其他更优雅的办法来实现。
非递归实现
public static <V> void bfsNotRecursive(TreeNode<V> tree) {
if (tree != null) {
//跟上面一样,使用 Map 也只是为了保存树的深度,没这个需要可以不用 Map
Queue<Map<TreeNode<V>, Integer>> queue = new ArrayDeque<>();
Map<TreeNode<V>, Integer> root = new HashMap<>();
root.put(tree, 0);
queue.offer(root);
while (!queue.isEmpty()) {
Map<TreeNode<V>, Integer> itemMap = queue.poll();
TreeNode<V> itemTreeNode = itemMap.keySet().iterator().next();
int depth = itemMap.get(itemTreeNode);
//打印节点值以及深度
System.out.println(itemTreeNode.getValue().toString() + ", " + depth);
if (itemTreeNode.getChildList() != null &&
!itemTreeNode.getChildList().isEmpty()) {
for (TreeNode<V> child : itemTreeNode.getChildList()) {
Map<TreeNode<V>, Integer> map = new HashMap<>();
map.put(child, depth + 1);
queue.offer(map);
}
}
}
}
}
相比较而言,非递归实现就比较简单了。
以上是关于深度优先(DFS)与广度优先搜索(BFS)递归版与非递归版的主要内容,如果未能解决你的问题,请参考以下文章
数据结构与算法图遍历算法 ( 深度优先搜索 DFS | 深度优先搜索和广度优先搜索 | 深度优先搜索基本思想 | 深度优先搜索算法步骤 | 深度优先搜索理论示例 )
Python算法-深度优先搜索&广度优先搜索(DFS&BFS)