HDFS架构设计
Posted 杉沐先生
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDFS架构设计相关的知识,希望对你有一定的参考价值。
01
—
简述
HDFS(Hadoop Distributed File System),作为Google File System(GFS)的实现,是Hadoop项目的核心子项目,是分布式计算中数据存储管理的基础,是基于流数据模式访问和处理超大文件的需求而开发的,可以运行于廉价的商用服务器上。它所具有的高容错、高可靠性、高可扩展性、高获得性、高吞吐率等特征为海量数据提供了不怕故障的存储,为超大数据集(Large Data Set)的应用处理带来了很多便利。
02
—
优缺点
HDFS特点:
高容错性、可构建在廉价机器上
适合批处理
适合大数据处理
流式文件访问
HDFS局限:
不支持低延迟访问
不适合小文件存储
不支持并发写入
不支持修改
03
—
架构介绍
HDFS由四部分组成,HDFS Client、NameNode、DataNode和Secondary NameNode。
HDFS是一个主/从(Mater/Slave)体系结构,HDFS集群拥有一个NameNode和一些DataNode。NameNode管理文件系统的元数据,DataNode存储实际的数据。
04
—
读、写文件过程
从HDFS读取内容
1、首先调用DistributedFileSystem对象的open方法,其实获取的是一个DistributedFileSystem的实例。
2、DistributedFileSystem通过RPC(远程过程调用)获得文件的第一批block的locations,同一block按照重复数会返回多个locations,这些locations按照hadoop拓扑结构排序,距离客户端近的排在前面。
3、前两步会返回一个FSDataInputStream对象,该对象会被封装成 DFSInputStream 对象,DFSInputStream可以方便的管理DataNode和NameNode数据流。客户端调用read方法,DFSInputStream就会找出离客户端最近的DataNode并连接DataNode。
4、数据从DataNode源源不断的流向客户端。
5、如果第一个block块的数据读完了,就会关闭指向第一个block块的DataNode连接,接着读取下一个block块。这些操作对客户端来说是透明的,从客户端的角度来看只是读一个持续不断的流。
6、如果第一批block都读完了,DFSInputStream就会去NameNode拿下一批blocks的location,然后继续读,如果所有的block块都读完,这时就会关闭掉所有的流。
向HDFS写入内容
1.客户端通过调用DistributedFileSystem的create方法,创建一个新的文件。
2.DistributedFileSystem通过RPC(远程过程调用)调用NameNode,去创建一个没有blocks关联的新文件。创建前,NameNode会做各种校验,比如文件是否存在,客户端有无权限去创建等。如果校验通过,NameNode 就会记录下新文件,否则就会抛出IO异常。
3.前两步结束后会返回 FSDataOutputStream 的对象,和读文件的时候相似,FSDataOutputStream 被封装成 DFSOutputStream,DFSOutputStream 可以协调NameNode和 DataNode。客户端开始写数据到DFSOutputStream,DFSOutputStream会把数据切成一个个小packet,然后排成队列data queue。
4.DataStreamer 会去处理接受 data queue,它先问询 NameNode 这个新的 block 最适合存储的在哪几个DataNode里,比如重复数是3,那么就找到3个最适合的DataNode,把它们排成一个 pipeline。DataStreamer 把 packet 按队列输出到管道的第一个 DataNode 中,第一个 DataNode又把 packet 输出到第二个 DataNode 中,以此类推。
5.DFSOutputStream 还有一个队列叫 ack queue,也是由 packet 组成,等待DataNode的收到响应,当pipeline中的所有DataNode都表示已经收到的时候,这时akc queue才会把对应的packet包移除掉。
6.客户端完成写数据后,调用close方法关闭写入流。
7.DataStreamer 把剩余的包都刷到 pipeline 里,然后等待 ack 信息,收到最后一个ack 后,通知 DataNode 把文件标示为已完成。
以上是关于HDFS架构设计的主要内容,如果未能解决你的问题,请参考以下文章