OMG,我从来没想过,二分查找还有诗?!

Posted 五分钟学算法

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了OMG,我从来没想过,二分查找还有诗?!相关的知识,希望对你有一定的参考价值。

下面开始今天的学习~

OMG,我从来没想过,二分查找还有诗?!


作者:labuladong  
公众号:labuladong

二分查找是极其简单容易理解的一种算法,但它的变形与细节也是极其繁杂的,一不小心就容易踩坑。

以下为全文。

这篇文章 将三种二分形式以一个框架统一起来了,以不变应万变,你遇到啥问题直接改两行就完事儿了。

为此我还特意作了首诗,可以说无敌的存在,建议收藏。

先给大家讲个笑话乐呵一下:

有一天阿东到图书馆借了 N 本书,出图书馆的时候,警报响了,于是保安把阿东拦下,要检查一下哪本书没有登记出借。阿东正准备把每一本书在报警器下过一下,以找出引发警报的书,但是保安露出不屑的眼神:你连二分查找都不会吗?于是保安把书分成两堆,让第一堆过一下报警器,报警器响;于是再把这堆书分成两堆…… 最终,检测了 logN 次之后,保安成功的找到了那本引起警报的书,露出了得意和嘲讽的笑容。于是阿东背着剩下的书走了。

从此,图书馆丢了 N - 1 本书。

二分查找不简单,Knuth 大佬(发明 KMP 算法的那位)都说二分查找:思路很简单,细节是魔鬼。

补充:

很多人喜欢拿整型溢出的 bug 说事儿,但是二分查找真正的坑根本就不是那个细节问题,而是在于到底要给mid加一还是减一,while 里到底用<=还是<

你要是没有正确理解这些细节,写二分肯定就是玄学编程,有没有 bug 只能靠菩萨保佑。我特意写了一首诗来歌颂该算法,概括本文的主要内容,建议保存:

OMG,我从来没想过,二分查找还有诗?!


你等会看完本文再回来读读,就有味道了。

本文就来探究几个最常用的二分查找场景:寻找一个数、寻找左侧边界、寻找右侧边界。而且,我们就是要深入细节,比如不等号是否应该带等号,mid 是否应该加一等等。

以问答的形式,分析这些细节的差异以及出现这些差异的原因,保证你能灵活准确地写出正确的二分查找算法。

零、二分查找框架

int binarySearch(int[] nums, int target) {
    int left = 0, right = ...;

    while(...) {
        int mid = left + (right - left) / 2;
        if (nums[mid] == target) {
            ...
        } else if (nums[mid] < target) {
            left = ...
        } else if (nums[mid] > target) {
            right = ...
        }
    }
    return ...;
}

分析二分查找的一个技巧是:不要出现 else,而是把所有情况用 else if 写清楚,这样可以清楚地展现所有细节。本文都会使用 else if,旨在讲清楚,读者理解后可自行简化。

其中...标记的部分,就是可能出现细节问题的地方,当你见到一个二分查找的代码时,首先注意这几个地方。后文用实例分析这些地方能有什么样的变化。

另外声明一下,计算 mid 时需要防止溢出,代码中left + (right - left) / 2就和(left + right) / 2的结果相同,但是有效防止了leftright太大直接相加导致溢出。

一、寻找一个数(基本的二分搜索)

这个场景是最简单的,肯能也是大家最熟悉的,即搜索一个数,如果存在,返回其索引,否则返回 -1。

int binarySearch(int[] nums, int target) {
    int left = 0
    int right = nums.length - 1// 注意

    while(left <= right) {
        int mid = left + (right - left) / 2;
        if(nums[mid] == target)
            return mid; 
        else if (nums[mid] < target)
            left = mid + 1// 注意
        else if (nums[mid] > target)
            right = mid - 1// 注意
    }
    return -1;
}

1、为什么 while 循环的条件中是 <=,而不是 <?

答:因为初始化right的赋值是nums.length - 1,即最后一个元素的索引,而不是nums.length

这二者可能出现在不同功能的二分查找中,区别是:前者相当于两端都闭区间[left, right],后者相当于左闭右开区间[left, right),因为索引大小为nums.length是越界的。

我们这个算法中使用的是前者[left, right]两端都闭的区间。这个区间其实就是每次进行搜索的区间。

什么时候应该停止搜索呢?当然,找到了目标值的时候可以终止:

    if(nums[mid] == target)
        return mid; 

但如果没找到,就需要 while 循环终止,然后返回 -1。那 while 循环什么时候应该终止?搜索区间为空的时候应该终止,意味着你没得找了,就等于没找到嘛。

while(left <= right)的终止条件是left == right + 1,写成区间的形式就是[right + 1, right],或者带个具体的数字进去[3, 2],可见这时候区间为空,因为没有数字既大于等于 3 又小于等于 2 的吧。所以这时候 while 循环终止是正确的,直接返回 -1 即可。

while(left < right)的终止条件是left == right,写成区间的形式就是[left, right],或者带个具体的数字进去[2, 2]这时候区间非空,还有一个数 2,但此时 while 循环终止了。也就是说这区间[2, 2]被漏掉了,索引 2 没有被搜索,如果这时候直接返回 -1 就是错误的。

当然,如果你非要用while(left < right)也可以,我们已经知道了出错的原因,就打个补丁好了:

    //...
    while(left < right) {
        // ...
    }
    return nums[left] == target ? left : -1;

2、为什么left = mid + 1right = mid - 1?我看有的代码是right = mid或者left = mid,没有这些加加减减,到底怎么回事,怎么判断?

答:这也是二分查找的一个难点,不过只要你能理解前面的内容,就能够很容易判断。

刚才明确了「搜索区间」这个概念,而且本算法的搜索区间是两端都闭的,即[left, right]。那么当我们发现索引mid不是要找的target时,下一步应该去搜索哪里呢?

当然是去搜索[left, mid-1]或者[mid+1, right]对不对?因为mid已经搜索过,应该从搜索区间中去除。

3、此算法有什么缺陷?

答:至此,你应该已经掌握了该算法的所有细节,以及这样处理的原因。但是,这个算法存在局限性。

比如说给你有序数组nums = [1,2,2,2,3]target为 2,此算法返回的索引是 2,没错。但是如果我想得到target的左侧边界,即索引 1,或者我想得到target的右侧边界,即索引 3,这样的话此算法是无法处理的。

这样的需求很常见,你也许会说,找到一个 target,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的复杂度了。

我们后续的算法就来讨论这两种二分查找的算法。

二、寻找左侧边界的二分搜索

以下是最常见的代码形式,其中的标记是需要注意的细节:

int left_bound(int[] nums, int target) {
    if (nums.length == 0return -1;
    int left = 0;
    int right = nums.length; // 注意

    while (left < right) { // 注意
        int mid = (left + right) / 2;
        if (nums[mid] == target) {
            right = mid;
        } else if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid; // 注意
        }
    }
    return left;
}

1、为什么 while 中是<而不是<=?

答:用相同的方法分析,因为right = nums.length而不是nums.length - 1。因此每次循环的「搜索区间」是[left, right)左闭右开。

while(left < right)终止的条件是left == right,此时搜索区间[left, left)为空,所以可以正确终止。

PS:这里先要说一个搜索左右边界和上面这个算法的一个区别,也是很多读者问的:刚才的right不是nums.length - 1吗,为啥这里非要写成nums.length使得「搜索区间」变成左闭右开呢?

因为对于搜索左右侧边界的二分查找,这种写法比较普遍,我就拿这种写法举例了,保证你以后看到这类代码可以理解。其实你非要用两端都闭的写法反而更简单,我会在后面写相关的代码,把三种二分搜索都用一种两端都闭的写法统一起来,你耐心往后看就行了。

2、为什么没有返回 -1 的操作?如果nums中不存在target这个值,怎么办?

答:因为要一步一步来,先理解一下这个「左侧边界」有什么特殊含义:

OMG,我从来没想过,二分查找还有诗?!

对于这个数组,算法会返回 1。这个 1 的含义可以这样解读:nums中小于 2 的元素有 1 个。

比如对于有序数组nums = [2,3,5,7],target = 1,算法会返回 0,含义是:nums中小于 1 的元素有 0 个。

再比如说nums = [2,3,5,7], target = 8,算法会返回 4,含义是:nums中小于 8 的元素有 4 个。

综上可以看出,函数的返回值(即left变量的值)取值区间是闭区间[0, nums.length],所以我们简单添加两行代码就能在正确的时候 return -1:

while (left < right) {
    //...
}
// target 比所有数都大
if (left == nums.length) return -1;
// 类似之前算法的处理方式
return nums[left] == target ? left : -1;

3、为什么left = mid + 1right = mid?和之前的算法不一样?

答:这个很好解释,因为我们的「搜索区间」是[left, right)左闭右开,所以当nums[mid]被检测之后,下一步的搜索区间应该去掉mid分割成两个区间,即[left, mid)[mid + 1, right)

4、为什么该算法能够搜索左侧边界?

答:关键在于对于nums[mid] == target这种情况的处理:

    if (nums[mid] == target)
        right = mid;

可见,找到 target 时不要立即返回,而是缩小「搜索区间」的上界right,在区间[left, mid)中继续搜索,即不断向左收缩,达到锁定左侧边界的目的。

5、为什么返回left而不是right

答:都是一样的,因为 while 终止的条件是left == right

6、能不能想办法把right变成nums.length - 1,也就是继续使用两边都闭的「搜索区间」?这样就可以和第一种二分搜索在某种程度上统一起来了。

答:当然可以,只要你明白了「搜索区间」这个概念,就能有效避免漏掉元素,随便你怎么改都行。下面我们严格根据逻辑来修改:

因为你非要让搜索区间两端都闭,所以right应该初始化为nums.length - 1,while 的终止条件应该是left == right + 1,也就是其中应该用<=

int left_bound(int[] nums, int target) {
    // 搜索区间为 [left, right]
    int left = 0, right = nums.length - 1;
    while (left <= right) {
        int mid = left + (right - left) / 2;
        // if else ...
    }

因为搜索区间是两端都闭的,且现在是搜索左侧边界,所以leftright的更新逻辑如下:

if (nums[mid] < target) {
    // 搜索区间变为 [mid+1, right]
    left = mid + 1;
else if (nums[mid] > target) {
    // 搜索区间变为 [left, mid-1]
    right = mid - 1;
else if (nums[mid] == target) {
    // 收缩右侧边界
    right = mid - 1;
}

由于 while 的退出条件是left == right + 1,所以当targetnums中所有元素都大时,会存在以下情况使得索引越界:

OMG,我从来没想过,二分查找还有诗?!

因此,最后返回结果的代码应该检查越界情况:

if (left >= nums.length || nums[left] != target)
    return -1;
return left;

至此,整个算法就写完了,完整代码如下:

int left_bound(int[] nums, int target) {
    int left = 0, right = nums.length - 1;
    // 搜索区间为 [left, right]
    while (left <= right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] < target) {
            // 搜索区间变为 [mid+1, right]
            left = mid + 1;
        } else if (nums[mid] > target) {
            // 搜索区间变为 [left, mid-1]
            right = mid - 1;
        } else if (nums[mid] == target) {
            // 收缩右侧边界
            right = mid - 1;
        }
    }
    // 检查出界情况
    if (left >= nums.length || nums[left] != target)
        return -1;
    return left;
}

这样就和第一种二分搜索算法统一了,都是两端都闭的「搜索区间」,而且最后返回的也是left变量的值。只要把住二分搜索的逻辑,两种形式大家看自己喜欢哪种记哪种吧。

三、寻找右侧边界的二分查找

类似寻找左侧边界的算法,这里也会提供两种写法,还是先写常见的左闭右开的写法,只有两处和搜索左侧边界不同,已标注:

int right_bound(int[] nums, int target) {
    if (nums.length == 0return -1;
    int left = 0, right = nums.length;

    while (left < right) {
        int mid = (left + right) / 2;
        if (nums[mid] == target) {
            left = mid + 1// 注意
        } else if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid;
        }
    }
    return left - 1// 注意
}

1、为什么这个算法能够找到右侧边界?

答:类似地,关键点还是这里:

if (nums[mid] == target) {
    left = mid + 1;

nums[mid] == target时,不要立即返回,而是增大「搜索区间」的下界left,使得区间不断向右收缩,达到锁定右侧边界的目的。

2、为什么最后返回left - 1而不像左侧边界的函数,返回left?而且我觉得这里既然是搜索右侧边界,应该返回right才对。

答:首先,while 循环的终止条件是left == right,所以leftright是一样的,你非要体现右侧的特点,返回right - 1好了。

至于为什么要减一,这是搜索右侧边界的一个特殊点,关键在这个条件判断:

if (nums[mid] == target) {
    left = mid + 1;
    // 这样想: mid = left - 1
OMG,我从来没想过,二分查找还有诗?!

因为我们对left的更新必须是left = mid + 1,就是说 while 循环结束时,nums[left]一定不等于target了,而nums[left-1]可能是target

至于为什么left的更新必须是left = mid + 1,同左侧边界搜索,就不再赘述。

3、为什么没有返回 -1 的操作?如果nums中不存在target这个值,怎么办?

答:类似之前的左侧边界搜索,因为 while 的终止条件是left == right,就是说left的取值范围是[0, nums.length],所以可以添加两行代码,正确地返回 -1:

while (left < right) {
    // ...
}
if (left == 0return -1;
return nums[left-1] == target ? (left-1) : -1;

4、是否也可以把这个算法的「搜索区间」也统一成两端都闭的形式呢?这样这三个写法就完全统一了,以后就可以闭着眼睛写出来了。

答:当然可以,类似搜索左侧边界的统一写法,其实只要改两个地方就行了:

int right_bound(int[] nums, int target) {
    int left = 0, right = nums.length - 1;
    while (left <= right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid - 1;
        } else if (nums[mid] == target) {
            // 这里改成收缩左侧边界即可
            left = mid + 1;
        }
    }
    // 这里改为检查 right 越界的情况,见下图
    if (right < 0 || nums[right] != target)
        return -1;
    return right;
}

target比所有元素都小时,right会被减到 -1,所以需要在最后防止越界:

OMG,我从来没想过,二分查找还有诗?!

至此,搜索右侧边界的二分查找的两种写法也完成了,其实将「搜索区间」统一成两端都闭反而更容易记忆,你说是吧?

四、逻辑统一

来梳理一下这些细节差异的因果逻辑:

第一个,最基本的二分查找算法:

因为我们初始化 right = nums.length - 1
所以决定了我们的「搜索区间」是 [left, right]
所以决定了 while (left <= right)
同时也决定了 left = mid+1 和 right = mid-1

因为我们只需找到一个 target 的索引即可
所以当 nums[mid] == target 时可以立即返回

第二个,寻找左侧边界的二分查找:

因为我们初始化 right = nums.length
所以决定了我们的「搜索区间」是 [left, right)
所以决定了 while (left < right)
同时也决定了 left = mid + 1 和 right = mid

因为我们需找到 target 的最左侧索引
所以当 nums[mid] == target 时不要立即返回
而要收紧右侧边界以锁定左侧边界

第三个,寻找右侧边界的二分查找:

因为我们初始化 right = nums.length
所以决定了我们的「搜索区间」是 [left, right)
所以决定了 while (left < right)
同时也决定了 left = mid + 1 和 right = mid

因为我们需找到 target 的最右侧索引
所以当 nums[mid] == target 时不要立即返回
而要收紧左侧边界以锁定右侧边界

又因为收紧左侧边界时必须 left = mid + 1
所以最后无论返回 left 还是 right,必须减一

对于寻找左右边界的二分搜索,常见的手法是使用左闭右开的「搜索区间」,我们还根据逻辑将「搜索区间」全都统一成了两端都闭,便于记忆,只要修改两处即可变化出三种写法:

int binary_search(int[] nums, int target) {
    int left = 0, right = nums.length - 1
    while(left <= right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid - 1
        } else if(nums[mid] == target) {
            // 直接返回
            return mid;
        }
    }
    // 直接返回
    return -1;
}

int left_bound(int[] nums, int target) {
    int left = 0, right = nums.length - 1;
    while (left <= right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid - 1;
        } else if (nums[mid] == target) {
            // 别返回,锁定左侧边界
            right = mid - 1;
        }
    }
    // 最后要检查 left 越界的情况
    if (left >= nums.length || nums[left] != target)
        return -1;
    return left;
}


int right_bound(int[] nums, int target) {
    int left = 0, right = nums.length - 1;
    while (left <= right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid - 1;
        } else if (nums[mid] == target) {
            // 别返回,锁定右侧边界
            left = mid + 1;
        }
    }
    // 最后要检查 right 越界的情况
    if (right < 0 || nums[right] != target)
        return -1;
    return right;
}

如果以上内容你都能理解,那么恭喜你,二分查找算法的细节不过如此。

通过本文,你学会了:

1、分析二分查找代码时,不要出现 else,全部展开成 else if 方便理解。

2、注意「搜索区间」和 while 的终止条件,如果存在漏掉的元素,记得在最后检查。

3、如需定义左闭右开的「搜索区间」搜索左右边界,只要在nums[mid] == target时做修改即可,搜索右侧时需要减一。

4、如果将「搜索区间」全都统一成两端都闭,好记,只要稍改nums[mid] == target条件处的代码和返回的逻辑即可,推荐拿小本本记下,作为二分搜索模板。

现在可以去把我做的诗多读几遍,体会体会其中的味道,加深理解,哈哈哈!


END



OMG,我从来没想过,二分查找还有诗?!

● 

● 




点“在看你懂得 

以上是关于OMG,我从来没想过,二分查找还有诗?!的主要内容,如果未能解决你的问题,请参考以下文章

我决定放弃一次

查找出现次数的流程图(二分查找)

2016 - 1- 24 随便写写~~

原创这道Java基础题真的有坑!我也没想到还有续集。

一道有趣的签到题

Sequence(线段树+二分)