在hive中使用load data报错
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了在hive中使用load data报错相关的知识,希望对你有一定的参考价值。
在hive中使用load data,语句如下:
load data local inpath '/tmp/cz.txt' overwrite into table dummy;
结果给报了个异常:
Exception in thread "main" java.lang.NoSuchMethodError: org.apache.hadoop.fs.Path.<init>(Ljava/net/URI;)V
截图如下:
我使用的hadoop版本是0.20.2,hive版本是最新的0.13.1,应该是向下兼容的。目前我是在linux单机上部署的伪分布式。可以创建表,但是一旦只用load data,或者select count(*) 这种操作就会报上面的错误。
HIVE表数据的导入与导出(load data&insert overwrite)
1. 准备测试数据
首先创建普通表:
create table test(id int, name string) ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘,‘ STORED AS TEXTFILE;
创建分区表:
CREATE EXTERNAL TABLE test_p(
id int,
name string
)
partitioned by (date STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘,‘ LINES TERMINATED BY ‘
‘
STORED AS TEXTFILE;
准备数据文件:
[/tmp]# cat test.txt
1,a
2,b
3,c
4,d
2.加载数据
语法如下:
LOAD DATA [LOCAL] INPATH ‘filepath‘ [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]
说明:
- filepath 可能是:
- 一个相对路径
- 一个绝对路径,例如:
/root/project/data1
- 一个url地址,可选的可以带上授权信息,例如:
hdfs://namenode:9000/user/hive/project/data1
- 目标可能是一个表或者分区,如果该表是分区,则必须制定分区列。
- filepath 可以是一个文件也可以是目录
- 如果指定了
LOCAL
,则: load
命令会在本地查找 filepath。如果 filepath 是相对路径,则相对于当前路径,也可以指定一个 url 或者本地文件,例如:file:///user/hive/project/data1
- 如果没有指定
LOCAL
,则hive会使用全路径的url,url 中如果没有制定 schema,则默认使用fs.default.name
的值;如果该路径不是绝对路径,则会相对于/user/<username>
- 如果使用
OVERWRITE
,则会删除原来的数据,然后导入新的数据,否则,就是追加数据。
需要注意的:
filepath
中不能包括子目录- 如果没有指定
LOCAL
,则filepath
指向目标表或者分区所在的文件系统。 - 如果需要压缩,则参考 CompressedStorage
2.1 测试
2.1.1 加载本地文件
a) 加载到普通表中
hive> load data local inpath ‘/tmp/test.txt‘ into table test;
Copying data from file:/tmp/test.txt
Copying file: file:/tmp/test.txt
Loading data to table default.test
Table default.test stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 16, raw_data_size: 0]
OK
Time taken: 0.572 seconds
查看hdfs上的数据:
$ hadoop fs -ls /user/hive/warehouse/test
Found 1 items
-rwxrwxrwt 3 hive hadoop 16 2014-06-09 18:36 /user/hive/warehouse/test/test.txt
查看表中数据:
hive> select * from test;
OK
1 a
2 b
3 c
4 d
Time taken: 0.562 seconds, Fetched: 4 row(s)
b) 加载文件到分区表
通常是直接使用 load 命令加载:
LOAD DATA LOCAL INPATH "/tmp/test.txt" INTO TABLE test_p PARTITION (date=20140722)
注意:如果没有加上
overwrite
关键字,则加载相同文件最后会存在多个文件
还有一种方法是:创建分区目录,手动上传文件,最后再添加新的分区,代码如下:
hadoop fs -mkdir /user/hive/warehouse/test/date=20140320
ALTER TABLE test_p ADD IF NOT EXISTS PARTITION (date=20140320);
hive hadoop fs -rm /user/hive/warehouse/test/date=20140320/test.txt
hadoop fs -put /tmp/test.txt /user/hive/warehouse/test/date=20140320
同样,你也可以查看 hdfs 和表中的数据。
2.1.2 加载hdfs上的文件
拷贝 test.txt 为test_1.txt 并将其上传到 /user/hive/warehouse
:
$ cp test.txt test_1.txt
$ sudo -u hive hadoop fs -put test_1.txt /user/hive/warehouse
然后将 /user/hive/warehouse/test_1.txt
导入到test表中:
hive> load data inpath ‘/user/hive/warehouse/test_1.txt‘ into table test;
Loading data to table default.test
Table default.test stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 16, raw_data_size: 0]
OK
Time taken: 2.941 seconds
查看hdfs上的数据:
$ hadoop fs -ls /user/hive/warehouse/test
Found 2 items
-rwxr-xr-x 3 hive hadoop 16 2014-06-09 18:48 /user/hive/warehouse/test/test.txt
-rwxr-xr-x 3 hive hadoop 16 2014-06-09 18:45 /user/hive/warehouse/test/test_1.txt
查看表中数据:
hive> select * from test;
OK
1 a
2 b
3 c
4 d
1 a
2 b
3 c
4 d
Time taken: 0.302 seconds, Fetched: 8 row(s)
3. 插入数据
标准语法:
INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]] select_statement1 FROM from_statement;
INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1 FROM from_statement;
扩展语法(多个insert):
FROM from_statement
INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]] select_statement1
[INSERT OVERWRITE TABLE tablename2 [PARTITION ... [IF NOT EXISTS]] select_statement2]
[INSERT INTO TABLE tablename2 [PARTITION ...] select_statement2] ...;
FROM from_statement
INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1
[INSERT INTO TABLE tablename2 [PARTITION ...] select_statement2]
[INSERT OVERWRITE TABLE tablename2 [PARTITION ... [IF NOT EXISTS]] select_statement2] ...;
扩展语法(动态分区insert):
INSERT OVERWRITE TABLE tablename PARTITION (partcol1[=val1], partcol2[=val2] ...) select_statement FROM from_statement;
INSERT INTO TABLE tablename PARTITION (partcol1[=val1], partcol2[=val2] ...) select_statement FROM from_statement;
说明:
- INSERT OVERWRITE 会覆盖存在的数据
- 输出的格式和序列化类取决于表的元数据
- hive 0.13.0之后,select语句可以使用 CTEs 表达式,语法请参考 SELECT syntax,示例见 Common Table Expression
Dynamic Partition Inserts
dynamic partition inserts在hive 0.6.0中引入。相关的配置参数有:
hive.exec.dynamic.partition
hive.exec.dynamic.partition.mode
hive.exec.max.dynamic.partitions.pernode
hive.exec.max.dynamic.partitions
hive.exec.max.created.files
hive.error.on.empty.partition
一个示例:
FROM page_view_stg pvs
INSERT OVERWRITE TABLE page_view PARTITION(dt=‘2008-06-08‘, country)
SELECT pvs.viewTime, pvs.userid, pvs.page_url, pvs.referrer_url, null, null, pvs.ip, pvs.cnt
4. 导出数据
标准语法:
INSERT OVERWRITE [LOCAL] DIRECTORY directory1
[ROW FORMAT row_format] [STORED AS file_format] (Note: Only available starting with Hive 0.11.0)
SELECT ... FROM ...
扩展语法(多个insert):
FROM from_statement
INSERT OVERWRITE [LOCAL] DIRECTORY directory1 select_statement1
[INSERT OVERWRITE [LOCAL] DIRECTORY directory2 select_statement2] ...
row_format相关语法:
DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS TERMINATED BY char]
[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
[NULL DEFINED AS char](Note: Only available starting with Hive 0.13)
说明:
- Directory 可以是一个全路径的 url。
- 如果指定
LOCAL
,则会将数据写到本地文件系统。 - 输出的数据序列化为 text 格式,分隔符为
^A
,行于行之间通过换行符连接。如果存在不是基本类型的列,则这些列将被序列化为 JSON 格式。 - 在 Hive 0.11.0 可以输出字段的分隔符,之前版本的默认为
^A
。
4.1 测试;
4.1.1 导出到本地文件系统
hive> insert overwrite local directory ‘/tmp/test‘ select * from test;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there‘s no reduce operator
Starting Job = job_1402248601715_0016, Tracking URL = http://cdh1:8088/proxy/application_1402248601715_0016/
Kill Command = /usr/lib/hadoop/bin/hadoop job -kill job_1402248601715_0016
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2014-06-09 19:25:12,896 Stage-1 map = 0%, reduce = 0%
2014-06-09 19:25:20,380 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.99 sec
2014-06-09 19:25:21,433 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.99 sec
MapReduce Total cumulative CPU time: 990 msec
Ended Job = job_1402248601715_0016
Copying data to local directory /tmp/test
Copying data to local directory /tmp/test
MapReduce Jobs Launched:
Job 0: Map: 1 Cumulative CPU: 0.99 sec HDFS Read: 305 HDFS Write: 32 SUCCESS
Total MapReduce CPU Time Spent: 990 msec
OK
Time taken: 18.438 seconds
导出后的数据预览如下:
[/tmp]# vim test/000000_0
1^Aa
2^Ab
3^Ac
4^Ad
1^Aa
2^Ab
3^Ac
4^Ad
可以看到数据中的列与列之间的分隔符是^A
(ascii码是