Hive碎碎念(2):分析函数和窗口函数

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hive碎碎念(2):分析函数和窗口函数相关的知识,希望对你有一定的参考价值。

参考技术A 在Hive 0.11之后支持的,扫描多个输入的行计算每行的结果。通常和OVER,PARTITION BY, ORDER BY, WINDOWING配合使用。和传统的分组结果不一样,传统的结果每组中只有一个结果。分析函数的结果会出现多次,和每条记录都连接输出。
语法形式如下:

OVER从句

使用标准的聚合函数COUNT,SUM,MIN,MAX,AVG
使用PARTITION BY语句,使用一个或者多个原始数据类型的列
使用PARTITION BY与ORDER BY语句,使用一个或者多个数据类型的分区或者拍序列
使用窗口规范,窗口规范支持一下格式:

当ORDER BY后面缺少窗口从句条件,窗口规范默认是

当ORDER BY和窗口从句都缺失,窗口规范默认是:

在聚合函数(sum, count, avg)中支持distinct,但是在order by或者 窗口限制中不支持。
conut(distinct a) over(partition by c)

select rank() over(order by sum(b))

count(distinct a) over (partition by c order by d rows between 1 preceding and 1 following)

结果和ORDER BY相关,默认为升序
如果不指定ROWS BETWEEN,默认为从起点到当前行;
如果不指定ORDER BY,则将分组内所有值累加;
PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:当前行
UNBOUNDED:无界限(起点或终点)
UNBOUNDED PRECEDING:表示从前面的起点
UNBOUNDED FOLLOWING:表示到后面的终点
其他COUNT、AVG,MIN,MAX,和SUM用法一样。

+----------+
| user_id |
+----------+
| tom1 |
| tom3 |
+----------+

+----------+------------+--------+------+----------------------+--+
| user_id | user_type | sales | cd1 | cd2 |
+----------+------------+--------+------+----------------------+--+
| liliu | new | 1 | 0.3 | 0.2857142857142857 |
| tom | new | 1 | 0.3 | 0.2857142857142857 |
| zhangsa | new | 2 | 0.5 | 0.42857142857142855 |
| wanger | new | 3 | 0.7 | 0.5714285714285714 |
| tom2 | new | 5 | 0.9 | 0.8571428571428571 |
| tom3 | new | 5 | 0.9 | 0.8571428571428571 |
| tom1 | new | 6 | 1.0 | 1.0 |
| lisi | old | 1 | 0.3 | 0.3333333333333333 |
| tomas | old | 2 | 0.5 | 0.6666666666666666 |
| tomson | old | 3 | 0.7 | 1.0 |
+----------+------------+--------+------+----------------------+--+

+------------+--------+----+-----+---------------------+---------------------+--+
| user_type | sales | s | r | pr | prg |
+------------+--------+----+-----+---------------------+---------------------+--+
| new | 1 | 7 | 1 | 0.0 | 0.0 |
| new | 1 | 7 | 1 | 0.0 | 0.0 |
| new | 2 | 7 | 4 | 0.3333333333333333 | 0.3333333333333333 |
| new | 3 | 7 | 6 | 0.5555555555555556 | 0.5 |
| new | 5 | 7 | 8 | 0.7777777777777778 | 0.6666666666666666 |
| new | 5 | 7 | 8 | 0.7777777777777778 | 0.6666666666666666 |
| new | 6 | 7 | 10 | 1.0 | 1.0 |
| old | 1 | 3 | 1 | 0.0 | 0.0 |
| old | 2 | 3 | 4 | 0.3333333333333333 | 0.5 |
| old | 3 | 3 | 6 | 0.5555555555555556 | 1.0 |
+------------+--------+----+-----+---------------------+---------------------+--+

Hive分析窗口函数 SUM,AVG,MIN,MAX

Hive分析窗口函数(一) SUM,AVG,MIN,MAX

Hive分析窗口函数(一) SUM,AVG,MIN,MAX

Hive中提供了越来越多的分析函数,用于完成负责的统计分析。抽时间将所有的分析窗口函数理一遍,将陆续发布。

今天先看几个基础的,SUM、AVG、MIN、MAX。

用于实现分组内所有和连续累积的统计。

数据准备

  1. CREATE EXTERNAL TABLE lxw1234 (
  2. cookieid string,
  3. createtime string, --day
  4. pv INT
  5. ) ROW FORMAT DELIMITED
  6. FIELDS TERMINATED BY \',\'
  7. stored as textfile location \'/tmp/lxw11/\';
  8.  
  9. DESC lxw1234;
  10. cookieid STRING
  11. createtime STRING
  12. pv INT
  13.  
  14. hive> select * from lxw1234;
  15. OK
  16. cookie1 2015-04-10 1
  17. cookie1 2015-04-11 5
  18. cookie1 2015-04-12 7
  19. cookie1 2015-04-13 3
  20. cookie1 2015-04-14 2
  21. cookie1 2015-04-15 4
  22. cookie1 2015-04-16 4

SUM — 注意,结果和ORDER BY相关,默认为升序

  1. SELECT cookieid,
  2. createtime,
  3. pv,
  4. SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
  5. SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
  6. SUM(pv) OVER(PARTITION BY cookieid) AS pv3, --分组内所有行
  7. SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --当前行+往前3
  8. SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --当前行+往前3行+往后1
  9. SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 ---当前行+往后所有行
  10. FROM lxw1234;
  11.  
  12. cookieid createtime pv pv1 pv2 pv3 pv4 pv5 pv6
  13. -----------------------------------------------------------------------------
  14. cookie1 2015-04-10 1 1 1 26 1 6 26
  15. cookie1 2015-04-11 5 6 6 26 6 13 25
  16. cookie1 2015-04-12 7 13 13 26 13 16 20
  17. cookie1 2015-04-13 3 16 16 26 16 18 13
  18. cookie1 2015-04-14 2 18 18 26 17 21 10
  19. cookie1 2015-04-15 4 22 22 26 16 20 8
  20. cookie1 2015-04-16 4 26 26 26 13 13 4

 

pv1: 分组内从起点到当前行的pv累积,如,11号的pv1=10号的pv+11号的pv, 12号=10号+11号+12号
pv2: 同pv1
pv3: 分组内(cookie1)所有的pv累加
pv4: 分组内当前行+往前3行,如,11号=10号+11号, 12号=10号+11号+12号, 13号=10号+11号+12号+13号, 14号=11号+12号+13号+14号
pv5: 分组内当前行+往前3行+往后1行,如,14号=11号+12号+13号+14号+15号=5+7+3+2+4=21
pv6: 分组内当前行+往后所有行,如,13号=13号+14号+15号+16号=3+2+4+4=13,14号=14号+15号+16号=2+4+4=10

 

如果不指定ROWS BETWEEN,默认为从起点到当前行;
如果不指定ORDER BY,则将分组内所有值累加;
关键是理解ROWS BETWEEN含义,也叫做WINDOW子句
PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:当前行
UNBOUNDED:起点,UNBOUNDED PRECEDING 表示从前面的起点, UNBOUNDED FOLLOWING:表示到后面的终点

–其他AVG,MIN,MAX,和SUM用法一样。

  1. --AVG
  2. SELECT cookieid,
  3. createtime,
  4. pv,
  5. AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
  6. AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
  7. AVG(pv) OVER(PARTITION BY cookieid) AS pv3, --分组内所有行
  8. AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --当前行+往前3
  9. AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --当前行+往前3行+往后1
  10. AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 ---当前行+往后所有行
  11. FROM lxw1234;
  12. cookieid createtime pv pv1 pv2 pv3 pv4 pv5 pv6
  13. -----------------------------------------------------------------------------
  14. cookie1 2015-04-10 1 1.0 1.0 3.7142857142857144 1.0 3.0 3.7142857142857144
  15. cookie1 2015-04-11 5 3.0 3.0 3.7142857142857144 3.0 4.333333333333333 4.166666666666667
  16. cookie1 2015-04-12 7 4.333333333333333 4.333333333333333 3.7142857142857144 4.333333333333333 4.0 4.0
  17. cookie1 2015-04-13 3 4.0 4.0 3.7142857142857144 4.0 3.6 3.25
  18. cookie1 2015-04-14 2 3.6 3.6 3.7142857142857144 4.25 4.2 3.3333333333333335
  19. cookie1 2015-04-15 4 3.6666666666666665 3.6666666666666665 3.7142857142857144 4.0 4.0 4.0
  20. cookie1 2015-04-16 4 3.7142857142857144 3.7142857142857144 3.7142857142857144 3.25 3.25 4.0
  1. --MIN
  2. SELECT cookieid,
  3. createtime,
  4. pv,
  5. MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
  6. MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
  7. MIN(pv) OVER(PARTITION BY cookieid) AS pv3, --分组内所有行
  8. MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --当前行+往前3
  9. MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --当前行+往前3行+往后1
  10. MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 ---当前行+往后所有行
  11. FROM lxw1234;
  12.  
  13. cookieid createtime pv pv1 pv2 pv3 pv4 pv5 pv6
  14. -----------------------------------------------------------------------------
  15. cookie1 2015-04-10 1 1 1 1 1 1 1
  16. cookie1 2015-04-11 5 1 1 1 1 1 2
  17. cookie1 2015-04-12 7 1 1 1 1 1 2
  18. cookie1 2015-04-13 3 1 1 1 1 1 2
  19. cookie1 2015-04-14 2 1 1 1 2 2 2
  20. cookie1 2015-04-15 4 1 1 1 2 2 4
  21. cookie1 2015-04-16 4 1 1 1 2 2 4
  1. ----MAX
  2. SELECT cookieid,
  3. createtime,
  4. pv,
  5. MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
  6. MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
  7. MAX(pv) OVER(PARTITION BY cookieid) AS pv3, --分组内所有行
  8. MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --当前行+往前3
  9. MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --当前行+往前3行+往后1
  10. MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 ---当前行+往后所有行
  11. FROM lxw1234;
  12.  
  13. cookieid createtime pv pv1 pv2 pv3 pv4 pv5 pv6
  14. -----------------------------------------------------------------------------
  15. cookie1 2015-04-10 1 1 1 7 1 5 7
  16. cookie1 2015-04-11 5 5 5 7 5 7 7
  17. cookie1 2015-04-12 7 7 7 7 7 7 7
  18. cookie1 2015-04-13 3 7 7 7 7 7 4
  19. cookie1 2015-04-14 2 7 7 7 7 7 4
  20. cookie1 2015-04-15 4 7 7 7 7 7 4
  21. cookie1 2015-04-16 4 7 7 7 4 4 4

其他函数的介绍将陆续整理发布。。

以上是关于Hive碎碎念(2):分析函数和窗口函数的主要内容,如果未能解决你的问题,请参考以下文章

数据分析课程笔记 - 20 - HIVE 核心技能之窗口函数

Hive分析函数LAG和LEAD详解

Hive分析窗口函数 SUM,AVG,MIN,MAX

sql Hive窗口和分析函数,超过子句

string碎碎念

Hive分析窗口(开窗函数)