推荐 论文:基于卷积K均值聚类算法的CNN无监督学习
Posted 机器学习研究会
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了推荐 论文:基于卷积K均值聚类算法的CNN无监督学习相关的知识,希望对你有一定的参考价值。
The task of labeling data for training deep neural networks is daunting and tedious, requiring millions of labels to achieve the current state-of-the-art results. Such reliance on large amounts of labeled data can be relaxed by exploiting hierarchical features via unsupervised learning techniques. In this work, we propose to train a deep convolutional network based on an enhanced version of the k-means clustering algorithm, which reduces the number of correlated parameters in the form of similar filters, and thus increases test categorization accuracy. We call our algorithm convolutional k-means clustering. We further show that learning the connection between the layers of a deep convolutional neural network improves its ability to be trained on a smaller amount of labeled data. Our experiments show that the proposed algorithm outperforms other techniques that learn filters unsupervised. Specifically, we obtained a test accuracy of 74.1% on STL-10 and a test error of 1.4% on MNIST.
链接:
http://arxiv.org/abs/1511.06241
原文链接:
http://m.weibo.cn/1402400261/3911553864646037?sourcetype=page&lfid=2302592000382195&lcardid=2302592000382195_-_3911553864646037&mid=3911553864646037&luicode=10000011&_status_id=3911553864646037&uicode=10000002
以上是关于推荐 论文:基于卷积K均值聚类算法的CNN无监督学习的主要内容,如果未能解决你的问题,请参考以下文章
2019-07-31机器学习无监督学习之聚类 K-Means算法实例 (图像分割)