推荐 论文:基于卷积K均值聚类算法的CNN无监督学习

Posted 机器学习研究会

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了推荐 论文:基于卷积K均值聚类算法的CNN无监督学习相关的知识,希望对你有一定的参考价值。

点击上方 “公众号”可以订阅哦!
摘要
转自:爱可可-爱生活

The task of labeling data for training deep neural networks is daunting and tedious, requiring millions of labels to achieve the current state-of-the-art results. Such reliance on large amounts of labeled data can be relaxed by exploiting hierarchical features via unsupervised learning techniques. In this work, we propose to train a deep convolutional network based on an enhanced version of the k-means clustering algorithm, which reduces the number of correlated parameters in the form of similar filters, and thus increases test categorization accuracy. We call our algorithm convolutional k-means clustering. We further show that learning the connection between the layers of a deep convolutional neural network improves its ability to be trained on a smaller amount of labeled data. Our experiments show that the proposed algorithm outperforms other techniques that learn filters unsupervised. Specifically, we obtained a test accuracy of 74.1% on STL-10 and a test error of 1.4% on MNIST.


链接:

http://arxiv.org/abs/1511.06241


原文链接:

http://m.weibo.cn/1402400261/3911553864646037?sourcetype=page&lfid=2302592000382195&lcardid=2302592000382195_-_3911553864646037&mid=3911553864646037&luicode=10000011&_status_id=3911553864646037&uicode=10000002

欢迎参加人工智能与机器学习微信讲座!
参加方法:微信扫描以下二维码或搜索ML_admin,加群主为好友。
我们安排了群务处理您的申请请求。
“完整内容”请点击【阅读原文】
↓↓↓

以上是关于推荐 论文:基于卷积K均值聚类算法的CNN无监督学习的主要内容,如果未能解决你的问题,请参考以下文章

2019-07-31机器学习无监督学习之聚类 K-Means算法实例 (图像分割)

2019-07-25机器学习无监督学习之聚类 K-Means算法实例 (1999年中国居民消费城市分类)

无监督学习之聚类1——Kmeans

无监督学习之聚类2——DBSCAN

《Python机器学习及实践》----无监督学习之数据聚类

《Python机器学习及实践》----无监督学习之数据聚类