层级聚类算法python实现
Posted 生信学习
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了层级聚类算法python实现相关的知识,希望对你有一定的参考价值。
python实现对50个基因表达量层级聚类算法
聚类算法python实现
层级聚类
Hierarchical_Clustering.py
思路
通过50行基因,实验组和对照组两列,每组各3个重复的平均表达量,根据欧式距离计算距离矩阵DE
对距离矩阵进行层级聚类
层级聚类算法伪代码:
Hierarchical_Clustering(d,n)
形成n个类,每个类含有一个元素
构建树型图,为每个类分配一个单独的顶点
while 存在多于一个类
找到最近的两个雷C1和C2
将C1和C2合并成一个新的类C,Chanyou |C1|+|C2|个元素
计算C与其他各类的距离
在树形图中增加一个顶点C,且与C1和C2相连
在距离矩阵中删除与C1和C2相对应的行和列
在距离矩阵中为新类增加一行一列
return T
# -*- coding: UTF-8 -*-
import pandas as pd
import numpy as np
import math,os
os.chdir(r'F:\pycharm_project\cluster')
data = pd.read_csv(r'.\microarray_gcrma_diff_TOP50.csv',nrows = 51,header=None)
Exp_matrix = np.array(data.iloc[1:51,1:3],dtype =np.float64)
def Euclidean_Distances(A):
n = A.shape[0]
mydist = np.zeros((n, n))
for i in range(0,50):
for j in range(0,50):
d = math.sqrt((A[i][0]-A[j][0])**2+(A[i][1]-A[j][1])**2)
mydist[i,j] = ("%.2f" % d)
return mydist
DE = Euclidean_Distances(Exp_matrix)
#print(DE)
def find_min_index_list(A):
if 0 in A:
mask = A ==0
A[mask == True] =np.inf
else:
pass
dis_min = A.min()
dis_min_pos = np.where(A ==dis_min)
pos_list = []
for i in range(0,len(dis_min_pos[0])):
for j in range(0, len(dis_min_pos[0])):
if i > j:
pos_list.append([dis_min_pos[0][i],dis_min_pos[1][i]])
else:
pass
return pos_list
#min_index_list = find_min_index(DE)
#print(min_index_list)
def delete_list(mylist,index_list):
for i in range(0,len(index_list)):
if i == 0:
del mylist[index_list[i]]
else:
del mylist[index_list[i]-1]
return mylist
def class_Euclidean_min_Distances(min_index,A):
#calculate class distance
min_row1 = A[min_index[0],]
min_row2 = A[min_index[1],]
class_dis_to_other = np.fmin(min_row1,min_row2)
#delete distance list element
mylist = list(class_dis_to_other)
mylist_del = delete_list(mylist,list(min_index))
#delete distance matrix
A_del_row = np.delete(A, [min_index[0], min_index[1]], 0)
A_del_column = np.delete(A_del_row, [min_index[0], min_index[1]], 1)
#add distance list
A_add_row = np.row_stack((A_del_column,mylist_del))
mylist_del.append(np.inf)
A_add_column = np.column_stack((A_add_row,mylist_del ))
return A_add_column
#min_index = split_min_index(min_index_list)
#DE_new = class_Euclidean_min_Distances(min_index,DE)
#print(DE_new)
#min_index_list = find_min_index(A)
#min_index = split_min_index(min_index_list)
#A = class_Euclidean_min_Distances(min_index[0],A)
#A = class_Euclidean_min_Distances(min_index[1],A)
#print(A)
def hierarchical_clustering(A,N):
n_class = len(A)
n_layer = 1
while n_class > N:
min_index_list = find_min_index_list(A)
for i in range(0,int(len(min_index_list))):
A = class_Euclidean_min_Distances(min_index_list[i], A)
result = "the " + str(n_layer) + " layer class process is " + "{g" + str(
min_index_list[i][0]) + "," + "g" + str(min_index_list[i][1]) + "}" + "--->" + "g" + str(n_class-1)
n_class = n_class - 1
print(result)
n_layer +=1
return A
A = hierarchical_clustering(DE,1)
Hierarchical_Clustering输出结果及解释
the 1 layer class process is {g38,g17}--->g49
the 2 layer class process is {g48,g16}--->g48
the 3 layer class process is {g47,g15}--->g47
the 4 layer class process is {g46,g14}--->g46
the 5 layer class process is {g45,g13}--->g45
the 6 layer class process is {g44,g12}--->g44
the 7 layer class process is {g43,g11}--->g43
the 8 layer class process is {g42,g10}--->g42
the 9 layer class process is {g41,g9}--->g41
the 10 layer class process is {g40,g8}--->g40
the 11 layer class process is {g39,g7}--->g39
the 12 layer class process is {g38,g6}--->g38
the 13 layer class process is {g37,g5}--->g37
the 14 layer class process is {g36,g4}--->g36
the 15 layer class process is {g35,g3}--->g35
the 16 layer class process is {g34,g2}--->g34
the 17 layer class process is {g33,g1}--->g33
the 18 layer class process is {g32,g0}--->g32
the 19 layer class process is {g31,g0}--->g31
the 20 layer class process is {g30,g0}--->g30
the 21 layer class process is {g29,g0}--->g29
the 22 layer class process is {g28,g0}--->g28
the 23 layer class process is {g27,g0}--->g27
the 24 layer class process is {g26,g0}--->g26
the 25 layer class process is {g25,g0}--->g25
the 26 layer class process is {g24,g0}--->g24
the 27 layer class process is {g23,g0}--->g23
the 28 layer class process is {g22,g0}--->g22
the 29 layer class process is {g21,g0}--->g21
the 30 layer class process is {g20,g0}--->g20
the 31 layer class process is {g19,g0}--->g19
the 32 layer class process is {g18,g0}--->g18
the 33 layer class process is {g17,g0}--->g17
the 34 layer class process is {g16,g0}--->g16
the 35 layer class process is {g15,g0}--->g15
the 36 layer class process is {g14,g0}--->g14
the 37 layer class process is {g13,g0}--->g13
the 38 layer class process is {g12,g0}--->g12
the 39 layer class process is {g11,g0}--->g11
the 40 layer class process is {g10,g0}--->g10
the 41 layer class process is {g9,g0}--->g9
the 42 layer class process is {g8,g0}--->g8
the 43 layer class process is {g7,g0}--->g7
the 44 layer class process is {g6,g0}--->g6
the 45 layer class process is {g5,g0}--->g5
the 46 layer class process is {g4,g0}--->g4
the 47 layer class process is {g3,g0}--->g3
the 48 layer class process is {g2,g0}--->g2
the 49 layer class process is {g1,g0}--->g1
层级聚类过程为:例如{g38,g17}--->g49 表示原50个基因列表中第38个基因和第17个基因聚为一类,插入到剩下48个基因的末尾,作为新的第49个“基因”。以此类推,每次对两个基因聚为一类,插到剩下基因的末尾。
以上是关于层级聚类算法python实现的主要内容,如果未能解决你的问题,请参考以下文章