牛顿的三大成就是啥

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了牛顿的三大成就是啥相关的知识,希望对你有一定的参考价值。

百度

牛顿的三大发明
2009-12-24 | 分享
牛顿的三大发明是什么?记住是三大发明。说出名字,加三大发明的介绍!
问题补充:快快,今晚7点半前要用
作业不会,学霸帮你立即下载
满意回答
伟大的成就~建立微积分
在牛顿的全部科学贡献中,数学成就占有突出的地位。他数学生涯中的第一项创造性成果就是发现了二项式定理。据牛顿本人回忆,他是在1664年和1665年间的冬天,在研读沃利斯博士的《无穷算术》时,试图修改他的求圆面积的级数时发现这一定理的。
笛卡尔的解析几何把描述运动的函数关系和几何曲线相对应。牛顿在老师巴罗的指导下,在钻研笛卡尔的解析几何的基础上,找到了新的出路。可以把任意时刻的速度看是在微小的时间范围里的速度的平均值,这就是一个微小的路程和时间间隔的比值,当这个微小的时间间隔缩小到无穷小的时候,就是这一点的准确值。这就是微分的概念。
求微分相当于求时间和路程关系得在某点的切线斜率。一个变速的运动物体在一定时间范围里走过的路程,可以看作是在微小时间间隔里所走路程的和,这就是积分的概念。求积分相当于求时间和速度关系的曲线下面的面积。牛顿从这些基本概念出发,建立了微积分。
微积分的创立是牛顿最卓越的数学成就。牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为"流数术"。它所处理的一些具体问题,如切线问题、求积问题、瞬时速度问题以及函数的极大和极小值问题等,在牛顿前已经得到人们的研究了。但牛顿超越了前人,他站在了更高的角度,对以往分散的努力加以综合,将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。
牛顿没有及时发表微积分的研究成果,他研究微积分可能比莱布尼茨早一些,但是莱布尼茨所采取的表达形式更加合理,而且关于微积分的著作出版时间也比牛顿早。
在牛顿和莱布尼茨之间,为争论谁是这门学科的创立者的时候,竟然引起了一场悍然大波,这种争吵在各自的学生、支持者和数学家中持续了相当长的一段时间,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。
应该说,一门科学的创立决不是某一个人的业绩,它必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样,是牛顿和莱布尼茨在前人的基础上各自独立的建立起来的。
1707年,牛顿的代数讲义经整理后出版,定名为《普遍算术》。他主要讨论了代数基础及其(通过解方程)在解决各类问题中的应用。书中陈述了代数基本概念与基本运算,用大量实例说明了如何将各类问题化为代数方程,同时对方程的根及其性质进行了深入探讨,引出了方程论方面的丰硕成果,如:他得出了方程的根与其判别式之间的关系,指出可以利用方程系数确定方程根之幂的和数,即“牛顿幂和公式”。
牛顿对解析几何与综合几何都有贡献。他在1736年出版的《解析几何》中引入了曲率中心,给出密切线圆(或称曲线圆)概念,提出曲率公式及计算曲线的曲率方法。并将自己的许多研究成果总结成专论《三次曲线枚举》,于1704年发表。此外,他的数学工作还涉及数值分析、概率论和初等数论等众多领域。

伟大的成就~对光学的三大贡献
牛顿望远镜
在牛顿以前,墨子、培根、达·芬奇等人都研究过光学现象。反射定律是人们很早就认识的光学定律之一。近代科学兴起的时候,伽利略靠望远镜发现了“新宇宙”,震惊了世界。荷兰数学家斯涅尔首先发现了光的折射定律。笛卡尔提出了光的微粒说……
牛顿以及跟他差不多同时代的胡克、惠更斯等人,也象伽利略、 ... >
a13526758473 | 2009-12-24
24
3

百度知道

作业帮

宝宝知道

今日头条

言情小说

91助手

女生秘密

汽车报价

秀美甲

kk唱响

酷狗音乐

美摄
相关问题
牛顿发明了什么317
牛顿的发明824
牛顿有几项发明127
牛顿有哪些发明64
牛顿的发明有哪些?63
牛顿有些发明28
牛顿发明的什么?28
更多相关问题>>

关于“牛顿”的更多知识
牛顿成长故事371
牛顿第三定律讲什么329
牛顿的成长故事159
牛顿第三定律具体内容?89
牛顿三定律?84
求助关于"牛顿的三..."的问题

登录| 注册
电脑版|客户端|联系我们|反馈 ©2014 Baidu
参考技术A   1、在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律 。
  2、在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。
  3、在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。
  4、人物简介
  艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。
  他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。
  
参考技术B 被誉为近代科学的开创者牛顿,在科学上作出了巨大贡献。他的三大成就——光的分析、万有引力定律和微积分学,对现代科学的发展奠定了基础。 参考技术C 英国数学家、物理学家和哲学家。牛顿在《自然哲学的数学原理》里提出的万有引力定律以及他的牛顿运动定律是经典力学的基石,他还和莱布尼茨各自独立地发明了微积分,被誉为人类历史上最伟大的科学家之一。因为牛顿,经典力学又名为“牛顿力学”,而力的单位也叫做“牛顿”,另外,以牛顿命名的数学和科学术语还有“牛顿方程”、“牛顿-莱布尼茨公式”、“牛顿法”、“高斯-牛顿最小二乘法”、“牛顿环”、“非牛顿流体”等。 参考技术D 地球引力、万有引力。我察过了,电脑上这么写的。

超越所有人的成就,牛顿的光芒也无法掩盖的天才数学巨人

德国哲学家数学家 戈特弗里德·威廉·莱布尼茨(1646-1716)

艾萨克 • 牛顿堪称所有时代最伟大的数学家之一。他的成就无数,而其中超越所有人的成就是开创了微积分。

他与同时代人莱布尼茨一起分享这一荣誉。事实上, 是莱布尼茨给出了这门学科的明确记法甚至是名字。

然而,因牛顿率先开创了微积分而把他置于数学巨匠名单之首的学者们却常常忽视莱布尼茨,尽管他也开创了微积分。在某种程度上,莱布尼茨似乎被遗忘了。这不仅不公平也很不幸,因为在很多方面,莱布尼茨的故事和牛顿的一样, 也非常引人注目。

01

十年学法

1646年戈特弗里德 • 威廉 • 莱布尼茨(Gottfried Wilhelm Leibniz)出生于莱比锡。还是个孩子的时候,他就显示出广泛的阅读兴趣,而且他似乎拥有以惊人的速度学习任何东西的能力。莱布尼茨也许是一位令人难忘的学者,他在十五岁那年进入大学。三年后他得到了学士和硕士学位, 不久之后得到了阿尔特多夫大学的法学博士学位,大有“一览众山小”的气势。

与此同时在剑桥大学,牛顿正在夜以继日地研究他那非凡的流数。而莱布尼茨尽管完成了很多学科的学习,但是此时他对数学还是知之甚少。

几十年后他回忆说:“1672年, 当我到达巴黎时,我自学了几何,我的确对此学科知道的很少,对这门学科,我没有耐性去看那一长串的证明。”甚至欧几里得对他来说都是个很神秘的人物,当时他碰巧看到了笛卡儿的《几何》,他发现它太难了。没有人能够想到仅在几年内,莱布尼茨的诸多发现会使他跻身数学巨人之列。

法律占据了莱布尼茨接下来十年的大好时光。他受雇为美因茨选帝侯的顾问,并以这一身份承担外交使命,于1672年3月前往巴黎。

事实证明, 这一工作是他人生中重要的经历。这位年轻的外交官醉心于他在那里感觉到的美术、文学和科学的活力。他爱上了巴黎以及这一时期巴黎所展示出的一切,爱上了“太阳王”的都城。

02

惠更斯的数学评估

与伟大数学巨人的觉醒

在法国首都居住的众多知识分子当中,对莱布尼茨影响最大的是荷兰科学家克里斯蒂安 • 惠更斯(Christiaan Huygens, 1629—1695)。在这一重要时期,惠更斯充当着良师益友的角色,他想要评估一下这位年轻朋友的数学敏感性,于是向莱布尼茨发出挑战,要求他求解下面的无穷级数的和

(第n个分数的分母是前n个正整数之和。)

  

莱布尼茨仅凭着自身的聪明而不是过去已有的训练在实验几次后把这个级数重写成

然后,把括号中的每一个分数表示成两个分数,他把上式右边变成

方括号中第一项之后的所有项都消掉了。用这样的方法,他正确地计算得到

  

这位数学新手已通过了惠更斯的测试。关于这个问题在莱布尼茨的生涯中所起的作用,历史学家约瑟夫 • 霍夫曼发表了评论,他说:“那个例子如果再稍微难一点(莱布尼茨解不出来),那毫无疑问将浇灭他对数学的热情。”若是如此,成功就不会光顾他。

  

莱布尼茨不仅解决了一个问题。因被无穷级数所吸引,他思考了很多其他例子。后来他说,对这样一些和的研究,显然是他发现微积分的关键。这已成为莱布尼茨数学的标志,他就是要寻求一个基本原则,该原则能够把诸多类似问题组成的一大类问题统一起来。

在很大程度上,他的天才赋予了他这样的能力,能够发现连接似乎不相关的特殊例子的一般法则。实现这样的分析需要敏锐的智慧,而莱布尼茨当然拥有这样的智慧。

  

他的工作的第二个特点是重视好的数学记法。他推行一套收集了很多符号和法则的“人类思维字母”,如果能够照其行事,它也许会确保人们在数学乃至日常生活中做出正确的推理。

尽管这一宏伟计划从来没有变成现实,但被视为现代符号逻辑的前身。尽管莱布尼茨没有成功地符号化人类的思维,但是他引入的微积分记法却一直沿用至今。

  

在巴黎,他的智力旅行不断加速。他惯于博览群书,而且他的外交工作也对此带来影响,但是他还是很快进入数学的前沿阵地。

到了1673年春天,他正式开始自己的研究。莱布尼茨回忆说:“此时我已经为自己独立前进做好了准备,因为我读(数学)几乎如同他人读浪漫故事一样。”

戈特弗里德 • 威廉 • 莱布尼茨
(拉法耶特学院图书馆惠允)

现在,有些发现被认为是出于好奇心。例如,他解决了一个富有挑战性的问题,找到了和为完全平方且其平方和为完全平方的平方的三个数(这类神秘问题在他那个时代很流行)。莱布尼茨发现的数是64、152和409,它们的和是

这是一个完全平方,而它们的平方和是

这是一个平方的平方。他是如何发现这些数的并不重要,我们要强调的是:他不是通过猜测得到的。[6]莱布尼茨还发现了下面这个古怪的公式

这个公式不仅令世界上某些大数学家感到困惑(某种意义上也包括莱布尼茨自己),而且还帮助普及了虚数。

03

我们的微积分是莱布尼茨的微积分

这一切只是莱布尼茨数学生涯伟大篇章的序曲。随着在他巴黎寓所的工作的进展,他不断深入研究,到了1675年的秋天, 他已经拥有这个“新方法”,也就是我们现在所说的微积分。这段时光对他来说是愉快的,而对数学来说是非常重要的。

当现代观光客在巴黎的街道上散步时,他们总是会想到诞生于这座伟大城市的美术、音乐和文学作品,维克托 • 雨果或图卢兹-洛特雷克这样的人物好像重生了。但是,很少有人会意识到在三个多世纪前,同样的林荫道也见证了微积分的诞生。如果巴黎造就了伟大的艺术,它同样也造就伟大大的数学。很少有人意识到这一点,这也表明了莱布尼茨被严重遗忘了。

他的外交使命从1672年开始持续到1676年秋天,这年秋天他回到他的祖国德国。正是在德国,他于1684年发表了微分学的第一篇论文。两年后,第二篇论文介绍了这门学科的另一个分支——积分学。

事实上,当时的微积分思想还有很多逻辑不足。因此,它只能反映早期不成熟的积分思想。当后来的数学家充分掌握了这一思想后,他们遇到了令人难以理解的理论障碍,而这些障碍直到19世纪的近代才得以解决。

但是,戈特弗里德 • 威廉 • 莱布尼茨有资格分享属于他的荣耀。造化弄人,莱布尼茨生活在牛顿的时代,如果说牛顿这颗明亮的星星使莱布尼茨在公众记忆中的形象黯然失色, 那么也可以说,牛顿这颗明星将使所有星星都失色。

但是,数学界还是给莱布尼茨以充分的肯定。与牛顿一样,他发现了微分和积分的伟大思想,并且认识到微积分基本定理是二者之间的桥梁;与牛顿不同的是,他与世界分享了这些成果。因此,莱布尼茨启发了其他人,特别是伯努利兄弟,通过他们个人的研究和相互交流,他们构思了今天我们所知道的这门学科。就某些现实意义来说,我们的微积分是莱布尼茨的微积分。

该说的都说了,该做的都做了,在数学历史上这样一个重要时刻,重要的事实是这两位伟大的天才——牛顿和他的同辈莱布尼茨——同时发挥着作用,而不是一个人独领风骚。

深受读者喜爱的十年经典,千呼万唤的好书再版重出

看完顿感舒爽,让数学课堂上的知识变得更好懂、更通透

无需动用纸笔,纵览数学世界不可不谈的伟大定理、难题和争论

好奇心大满足,纵览数学的核心知识和历史八卦

以上是关于牛顿的三大成就是啥的主要内容,如果未能解决你的问题,请参考以下文章

牛顿发明了啥东西

超越所有人的成就,牛顿的光芒也无法掩盖的天才数学巨人

爱因斯坦的相对论和牛顿的第一,第二定律分别是啥?

什么是“牛顿法”或“牛顿迭代法”? 请简述过程及原理,有例子更好

Scratch编程:牛顿的苹果——地心引力

谁有牛顿的英语介绍???