mysql索引类型都有哪些

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了mysql索引类型都有哪些相关的知识,希望对你有一定的参考价值。

普通索引:一个索引只包含一个列,一个表可以有多个单列索引;
唯一索引:索引列的值必须唯一,但允许有空值;
复合索引:多列值组成一个索引,专门用于组合搜索,其效率大于索引合并;
聚簇索引:也可以称为主键索引,是一种数据存储方式,B+树结构,一张表只能有一个聚簇索引;
非聚簇索引:顾名思义,不是聚簇索引。
参考技术A 主要有以下几种索引类型:FULLTEXT,HASH,BTREE,RTREE。

mysql 索引

在mysql中建索引很容易一句create index...就可以了,我想知道怎么在这个索引上继续建立个索引,也就是二级索引。mysql支持这种技术吗?

二级索引??
mysql中每个表都有一个聚簇索引(clustered index ),除此之外的表上的每个非聚簇索引都是二级索引,又叫辅助索引(secondary indexes)。

以InnoDB来说,每个InnoDB表具有一个特殊的索引称为聚集索引。如果您的表上定义有主键,该主键索引是聚集索引。如果你不定义为您的表的主键时,MySQL取第一个唯一索引(unique)而且只含非空列(NOT NULL)作为主键,InnoDB使用它作为聚集索引。如果没有这样的列,InnoDB就自己产生一个这样的ID值,它有六个字节,而且是隐藏的,使其作为聚簇索引。

聚簇索引主要是为了方便存储。。所以二级索引应该都是对聚簇索引的索引。
下面是Mysql Manual上的原话,也可能我理解有误。
Every InnoDB table has a special index called the clustered index where the data for the rows is stored. If you define a PRIMARY KEY on your table, the index of the primary key is the clustered index.

If you do not define a PRIMARY KEY for your table, MySQL picks the first UNIQUE index that has only NOT NULL columns as the primary key and InnoDB uses it as the clustered index. If there is no such index in the table, InnoDB internally generates a hidden clustered index on a synthetic column containing row ID values. The rows are ordered by the ID that InnoDB assigns to the rows in such a table. The row ID is a 6-byte field that increases monotonically as new rows are inserted. Thus, the rows ordered by the row ID are physically in insertion order.

Accessing a row through the clustered index is fast because the row data is on the same page where the index search leads. If a table is large, the clustered index architecture often saves a disk I/O operation when compared to storage organizations that store row data using a different page from the index record. (For example, MyISAM uses one file for data rows and another for index records.)

In InnoDB, the records in non-clustered indexes (also called secondary indexes) contain the primary key value for the row. InnoDB uses this primary key value to search for the row in the clustered index. If the primary key is long, the secondary indexes use more space, so it is advantageous to have a short primary key.
参考技术A

在满足语句需求的情况下,尽量少的访问资源是数据库设计的重要原则,这和执行的 SQL 有直接的关系,索引问题又是 SQL 问题中出现频率最高的,常见的索引问题包括:无索引(失效)、隐式转换。1. SQL 执行流程看一个问题,在下面这个表 T 中,如果我要执行 需要执行几次树的搜索操作,会扫描多少行?

这分别是 ID 字段索引树、k 字段索引树。

这条 SQL 语句的执行流程:

1. 在 k 索引树上找到 k=3,获得 ID=3002. 回表到 ID 索引树查找 ID=300 的记录,对应 R33. 在 k 索引树找到下一个值 k=5,ID=5004. 再回到 ID 索引树找到对应 ID=500 的 R4

5. 在 k 索引树去下一个值 k=6,不符合条件,循环结束

这个过程读取了 k 索引树的三条记录,回表了两次。因为查询结果所需要的数据只在主键索引上有,所以必须得回表。所以,我们该如何通过优化索引,来避免回表呢?2. 常见索引优化2.1 覆盖索引覆盖索引,换言之就是索引要覆盖我们的查询请求,无需回表。

如果执行的语句是 ,这样的话因为 ID 的值在 k 索引树上,就不需要回表了。

覆盖索引可以减少树的搜索次数,显著提升查询性能,是常用的性能优化手段。

但是,维护索引是有代价的,所以在建立冗余索引来支持覆盖索引时要权衡利弊。

2.2 最左前缀原则

B+ 树的数据项是复合的数据结构,比如 的时候,B+ 树是按照从左到右的顺序来建立搜索树的,当 这样的数据来检索的时候,B+ 树会优先比较 name 来确定下一步的检索方向,如果 name 相同再依次比较 sex 和 age,最后得到检索的数据。

可以清楚的看到,A1 使用 tl 索引,A2 进行了全表扫描,虽然 A2 的两个条件都在 tl 索引中出现,但是没有使用到 name 列,不符合最左前缀原则,无法使用索引。所以在建立联合索引的时候,如何安排索引内的字段排序是关键。评估标准是索引的复用能力,因为支持最左前缀,所以当建立(a,b)这个联合索引之后,就不需要给 a 单独建立索引。原则上,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。上面这个例子中,如果查询条件里只有 b,就是没法利用(a,b)这个联合索引的,这时候就不得不维护另一个索引,也就是说要同时维护(a,b)、(b)两个索引。这样的话,就需要考虑空间占用了,比如,name 和 age 的联合索引,name 字段比 age 字段占用空间大,所以创建(name,age)联合索引和(age)索引占用空间是要小于(age,name)、(name)索引的。

2.3 索引下推

以人员表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是26岁的所有男性”。那么,SQL 语句是这么写的

    通过最左前缀索引规则,会找到 ID1,然后需要判断其他条件是否满足在 MySQL 5.6 之前,只能从 ID1 开始一个个回表。到主键索引上找出数据行,再对比字段值。而 MySQL 5.6 引入的索引下推优化(index condition pushdown),可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。这样,减少了回表次数和之后再次过滤的工作量,明显提高检索速度。

    2.4 隐式类型转化

    隐式类型转化主要原因是,表结构中指定的数据类型与传入的数据类型不同,导致索引无法使用。所以有两种方案:

    修改表结构,修改字段数据类型。

    修改应用,将应用中传入的字符类型改为与表结构相同类型。

    3. 为什么会选错索引3.1 优化器选择索引是优化器的工作,其目的是找到一个最优的执行方案,用最小的代价去执行语句。在数据库中,扫描行数是影响执行代价的因素之一。扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的 CPU 资源越少。当然,扫描行数并不是唯一的判断标准,优化器还会结合是否使用临时表、是否排序等因素进行综合判断。

    3.2 扫描行数

    MySQL 在真正开始执行语句之前,并不能精确的知道满足这个条件的记录有多少条,只能通过索引的区分度来判断。显然,一个索引上不同的值越多,索引的区分度就越好,而一个索引上不同值的个数我们称为“基数”,也就是说,这个基数越大,索引的区分度越好。

    MySQL 使用采样统计方法来估算基数:采样统计的时候,InnoDB 默认会选择 N 个数据页,统计这些页面上的不同值,得到一个平均值,然后乘以这个索引的页面数,就得到了这个索引的基数。而数据表是会持续更新的,索引统计信息也不会固定不变。所以,当变更的数据行数超过 1/M 的时候,会自动触发重新做一次索引统计。

    在 MySQL 中,有两种存储索引统计的方式,可以通过设置参数 innodb_stats_persistent 的值来选择:

    on 表示统计信息会持久化存储。默认 N = 20,M = 10。

    off 表示统计信息只存储在内存中。默认 N = 8,M = 16。

    由于是采样统计,所以不管 N 是 20 还是 8,这个基数都很容易不准确。所以,冤有头债有主,MySQL 选错索引,还得归咎到没能准确地判断出扫描行数。

    可以用 来重新统计索引信息,进行修正。

    3.3 索引选择异常和处理1. 采用 force index 强行选择一个索引。2. 可以考虑修改语句,引导 MySQL 使用我们期望的索引。3. 有些场景下,可以新建一个更合适的索引,来提供给优化器做选择,或删掉误用的索引。

以上是关于mysql索引类型都有哪些的主要内容,如果未能解决你的问题,请参考以下文章

mysql存储引擎及索引类型都有哪些

mysql索引都有哪些

mysql有几种索引类型?使用索引时都有那些地方要注意

mysql有几种索引类型?使用索引时都有那些地方要注意?sql优化原则

mysql 索引失效的原因都有哪些

mysql有几种索引类型?使用索引时都有那些地方要注意?sql优化原则是啥?