深度评测5大Python数据可视化工具
Posted 裸睡的猪
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度评测5大Python数据可视化工具相关的知识,希望对你有一定的参考价值。
作者 | 刘早起
来源 | 早起Python
指标说明
数据说明
from pyecharts.faker import Faker
x = Faker.choose()
y1 = Faker.values()
y2 = Faker.values()
Echarts
是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而Python是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,
pyecharts
诞生了,支持30+种图表。在pyecharts中制作条形图首先需要导入相关库from pyecharts import options as opts
from pyecharts.charts import Bar
c = (
Bar()
.add_xaxis(x)
.add_yaxis("商家A", y1)
.add_yaxis("商家B", y2)
.set_global_opts(title_opts=opts.TitleOpts(title="Pyecharts—柱状图", subtitle=""))
).render_notebook()
Matplotlib
应该是最广泛使用的Python可视化工具,支持的图形种类非常多,使用Matplotlib制作相同效果的图需要先导入相关库,并且并不支持原生中文所以还要设置下中文显示
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif'] = ['SimHei']
width = 0.35
x1 = np.arange(len(x))
fig, ax = plt.subplots()
rects1 = ax.bar(x1 - width/2, y1, width, label='商家A')
rects2 = ax.bar(x1 + width/2, y2, width, label='商家B')
ax.set_title('Matplotlib—柱状图')
ax.set_xticks(x1)
ax.set_xticklabels(x)
ax.legend()
plt.show()
Plotly
也是一款非常强大的Python可视化库,Plotly内置完整的交互能力及编辑工具,支持在线和离线模式,提供稳定的API以便与现有应用集成,既可以在web浏览器中展示数据图表,也可以存入本地拷贝。但是由于官方未提供中文文档,网上关于Plotly的教程也仅限于官方的一些demo,对于一些详细的参数设置并没有太多资料,首先还是先导入相关库并设置notebook显示
import plotly
import plotly.offline as py
import plotly.graph_objs as go
plotly.offline.init_notebook_mode(connected=True)
trace0 = go.Bar(
x = x,
y = y1,
name = '商家A',
)
trace1 = go.Bar(
x = x,
y = y2,
name = '商家B',
)
data = [trace0,trace1]
layout = go.Layout(
title={
'text': "Plotly-柱状图",
'y':0.9,
'x':0.5,
'xanchor': 'center',
'yanchor': 'top'})
fig = go.Figure(data=data, layout=layout)
py.iplot(fig)
Bokeh
是一个专门针对Web浏览器的呈现功能的交互式可视化Python库。这是Bokeh与其它可视化库最核心的区别,它可以做出像
D3.js
简洁漂亮的交互可视化效果,但是使用难度低于D3.js,首先还是导入相关库
from bokeh.transform import dodge
import pandas as pd
from bokeh.core.properties import value
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from bokeh.io import output_notebook
output_notebook() # 导入notebook绘图模块
from bokeh.plotting import figure,show
from bokeh.models import ColumnDataSource# 导入图表绘制、图标展示模块 # 导入ColumnDataSource模块 # 导入dodge、value模块
ColumnDataSource
,所以要先对数据进行转换,接着就是创建画布、添加数据及设置
df = pd.DataFrame({'商家A':y1,'商家B':y2},
index = x_)
_x = ['商家A','商家B'] # 系列名
data = {'index':x_}
for i in _x:
data[i] = df[i].tolist()# 生成数据,数据格式为dict
source = ColumnDataSource(data=data)# 将数据转化为ColumnDataSource对象
p = figure(x_range=x_, y_range=(0, 150), plot_height=350, title="boken-柱状图",tools="crosshair,pan,wheel_zoom,box_zoom,reset,box_select,lasso_select")
p.vbar(x=dodge('index', -0.1, range=p.x_range), top='商家A', width=0.2, source=source,color="#718dbf", legend=value("商家A"))
p.vbar(x=dodge('index', 0.1, range=p.x_range), top='商家B', width=0.2, source=source,color="#e84d60", legend=value("商家B"))# dodge(field_name, value, range=None) → 转换成一个可分组的对象,value为元素的位置(配合width设置)
p.xgrid.grid_line_color = None
p.legend.location = "top_left"
p.legend.orientation = "horizontal" # 其他参数设置
show(p)
seaborn
官网给出的标题就知道,seaborn是为了统计图表设计的,它是一种基于matplotlib的图形可视化库,也就是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图,还是我们的数据,使用Seaborn制作首先需要导入相关库,由于是基于Matplotlib,所以还是需要设置中文
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
小结
以上是关于深度评测5大Python数据可视化工具的主要内容,如果未能解决你的问题,请参考以下文章