线程池实现原理及案列
Posted 开源你我
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了线程池实现原理及案列相关的知识,希望对你有一定的参考价值。
一、原理图
我们都知道,线程池和多线程的区别就是一个是业务来了动态地去产生线程,一个是把线程事先产生出来放到一个池子中,当要使用线程的时候,从池子中拿出来,当用完后,再把线程放回池子中,但它远远没有这么简单。首先看看原理图,当客户端请求连接时,服务器监听到之后会将其放入到任务队列中,线程再从任务队列中拿走任务,这是两个典型的生产者消费者模型。对于后面的线程池来说,一开始初始化的时候,根据设计的不同,回去限定线程的最大个数,最小个数,初始化多少个等等。
例如:
int min_thr_num; /*线程组内默认最小线程数*/
int max_thr_num; /*线程组内默认最大线程数*/
int live_thr_num; /*当前存活线程个数*/
int busy_thr_num; /*忙状态线程个数*/
int wait_exit_thr_num; /*要销毁的线程个数*/
监控线程的任务也是简单明了,一般情况就是根据一定的算法去动态的产生于销毁线程。
例如:
GetAllNum表示获取线程池所有的线程数,m_iInitNum 表示初始化的线程数量,iAvailNum 工作的线程数,m_iMaxNum最大线程数,m_iAvailHigh工作线程的最高数量
if(iAvailNum < m_iAvailLow)
{
if(GetAllNum() + m_iInitNum - iAvailNum < m_iMaxNum)
{
CreateIdleThread(m_iInitNum - iAvailNum);
}
else
{
CreateIdleThread(m_iMaxNum - GetAllNum());
}
}
else if(iAvailNum > m_iAvailHigh)
{
DeleteIdleThread(1);
}
或
void *adjust_thread(void *threadpool)
{
int i;
threadpool_t *pool = (threadpool_t *)threadpool;
while (!pool->shutdown) {
sleep(DEFAULT_TIME); /*延时10秒*/
pthread_mutex_lock(&(pool->lock));
int queue_size = pool->queue_size;
int live_thr_num = pool->live_thr_num;
pthread_mutex_unlock(&(pool->lock));
pthread_mutex_lock(&(pool->thread_counter));
int busy_thr_num = pool->busy_thr_num;
pthread_mutex_unlock(&(pool->thread_counter));
/*任务数大于最小线程池个数并且存活的线程数少于最大线程个数时,创建新线程*/
if (queue_size >= MIN_WAIT_TASK_NUM && live_thr_num < pool->max_thr_num) {
pthread_mutex_lock(&(pool->lock));
int add = 0;
/*一次增加DEFAULT_THREAD个线程*/
for (i = 0; i < pool->max_thr_num && add < DEFAULT_THREAD_VARY
&& pool->live_thr_num < pool->max_thr_num; i++) {
if (pool->threads[i] == 0 || !is_thread_alive(pool->threads[i])) {
pthread_create(&(pool->threads[i]), NULL, threadpool_thread, (void *)pool);
add++;
pool->live_thr_num++;
}
}
pthread_mutex_unlock(&(pool->lock));
}
/*销毁多余的空闲线程*/
if ((busy_thr_num * 2) < live_thr_num && live_thr_num > pool->min_thr_num) {
/*一次销毁DEFAULT_THREAD个线程*/
pthread_mutex_lock(&(pool->lock));
pool->wait_exit_thr_num = DEFAULT_THREAD_VARY;
pthread_mutex_unlock(&(pool->lock));
for (i = 0; i < DEFAULT_THREAD_VARY; i++) {
/*通知处在空闲状态的线程*/
pthread_cond_signal(&(pool->queue_not_empty));
}
}
}
return NULL;
}
完整线程池代码
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <signal.h>
#include <errno.h>
#include "threadpool.h"
#define DEFAULT_TIME 10
#define MIN_WAIT_TASK_NUM 10
#define DEFAULT_THREAD_VARY 10
#define true 1
#define false 0
typedef struct {
void *(*function)(void *);
void *arg;
} threadpool_task_t;
struct threadpool_t {
pthread_mutex_t lock;
pthread_mutex_t thread_counter;
pthread_cond_t queue_not_full;
pthread_cond_t queue_not_empty;
pthread_t *threads;
pthread_t adjust_tid;
threadpool_task_t *task_queue;
int min_thr_num;
int max_thr_num;
int live_thr_num;
int busy_thr_num;
int wait_exit_thr_num;
int queue_front;
int queue_rear;
int queue_size;
int queue_max_size;
int shutdown;
};
void *threadpool_thread(void *threadpool);
void *adjust_thread(void *threadpool);
int is_thread_alive(pthread_t tid);
int threadpool_free(threadpool_t *pool);
threadpool_t *threadpool_create(int min_thr_num, int max_thr_num, int queue_max_size)
{
int i;
threadpool_t *pool = NULL;
do{
if((pool = (threadpool_t *)malloc(sizeof(threadpool_t))) == NULL) {
printf("malloc threadpool fail");
break;
}
pool->min_thr_num = min_thr_num;
pool->max_thr_num = max_thr_num;
pool->busy_thr_num = 0;
pool->live_thr_num = min_thr_num;
pool->queue_size = 0;
pool->queue_max_size = queue_max_size;
pool->queue_front = 0;
pool->queue_rear = 0;
pool->shutdown = false;
pool->threads = (pthread_t *)malloc(sizeof(pthread_t)*max_thr_num);
if (pool->threads == NULL) {
printf("malloc threads fail");
break;
}
memset(pool->threads, 0, sizeof(pthread_t)*max_thr_num);
pool->task_queue = (threadpool_task_t *)malloc(sizeof(threadpool_task_t)*queue_max_size);
if (pool->task_queue == NULL) {
printf("malloc task_queue fail");
break;
}
if (pthread_mutex_init(&(pool->lock), NULL) != 0
|| pthread_mutex_init(&(pool->thread_counter), NULL) != 0
|| pthread_cond_init(&(pool->queue_not_empty), NULL) != 0
|| pthread_cond_init(&(pool->queue_not_full), NULL) != 0)
{
printf("init the lock or cond fail");
break;
}
for (i = 0; i < min_thr_num; i++) {
pthread_create(&(pool->threads[i]), NULL, threadpool_thread, (void *)pool);
printf("start thread 0x%x...\n", (unsigned int)pool->threads[i]);
}
pthread_create(&(pool->adjust_tid), NULL, adjust_thread, (void *)pool);
return pool;
} while (0);
threadpool_free(pool);
return NULL;
}
int threadpool_add(threadpool_t *pool, void*(*function)(void *arg), void *arg)
{
pthread_mutex_lock(&(pool->lock));
while ((pool->queue_size == pool->queue_max_size) && (!pool->shutdown)) {
pthread_cond_wait(&(pool->queue_not_full), &(pool->lock));
}
if (pool->shutdown) {
pthread_mutex_unlock(&(pool->lock));
}
if (pool->task_queue[pool->queue_rear].arg != NULL) {
free(pool->task_queue[pool->queue_rear].arg);
pool->task_queue[pool->queue_rear].arg = NULL;
}
pool->task_queue[pool->queue_rear].function = function;
pool->task_queue[pool->queue_rear].arg = arg;
pool->queue_rear = (pool->queue_rear + 1)%pool->queue_max_size;
pool->queue_size++;
pthread_cond_signal(&(pool->queue_not_empty));
pthread_mutex_unlock(&(pool->lock));
return 0;
}
void *threadpool_thread(void *threadpool)
{
threadpool_t *pool = (threadpool_t *)threadpool;
threadpool_task_t task;
while (true) {
pthread_mutex_lock(&(pool->lock));
while ((pool->queue_size == 0) && (!pool->shutdown)) {
printf("thread 0x%x is waiting\n", (unsigned int)pthread_self());
pthread_cond_wait(&(pool->queue_not_empty), &(pool->lock));
if (pool->wait_exit_thr_num > 0) {
if (pool->live_thr_num > pool->min_thr_num) {
printf("thread 0x%x is exiting\n", (unsigned int)pthread_self());
pool->live_thr_num--;
pthread_mutex_unlock(&(pool->lock));
pthread_exit(NULL);
}
}
}
if (pool->shutdown) {
pthread_mutex_unlock(&(pool->lock));
printf("thread 0x%x is exiting\n", (unsigned int)pthread_self());
pthread_exit(NULL);
}
task.function = pool->task_queue[pool->queue_front].function;
task.arg = pool->task_queue[pool->queue_front].arg;
pool->queue_front = (pool->queue_front + 1)%pool->queue_max_size;
pool->queue_size--;
pthread_cond_broadcast(&(pool->queue_not_full));
pthread_mutex_unlock(&(pool->lock));
printf("thread 0x%x start working\n", (unsigned int)pthread_self());
pthread_mutex_lock(&(pool->thread_counter));
pool->busy_thr_num++;
pthread_mutex_unlock(&(pool->thread_counter));
(*(task.function))(task.arg);
//task.function(task.arg);
printf("thread 0x%x end working\n", (unsigned int)pthread_self());
pthread_mutex_lock(&(pool->thread_counter));
pool->busy_thr_num--;
pthread_mutex_unlock(&(pool->thread_counter));
}
pthread_exit(NULL);
//return (NULL);
}
void *adjust_thread(void *threadpool)
{
int i;
threadpool_t *pool = (threadpool_t *)threadpool;
while (!pool->shutdown) {
sleep(DEFAULT_TIME);
pthread_mutex_lock(&(pool->lock));
int queue_size = pool->queue_size;
int live_thr_num = pool->live_thr_num;
pthread_mutex_unlock(&(pool->lock));
pthread_mutex_lock(&(pool->thread_counter));
int busy_thr_num = pool->busy_thr_num;
pthread_mutex_unlock(&(pool->thread_counter));
if (queue_size >= MIN_WAIT_TASK_NUM && live_thr_num < pool->max_thr_num) {
pthread_mutex_lock(&(pool->lock));
int add = 0;
for (i = 0; i < pool->max_thr_num && add < DEFAULT_THREAD_VARY
&& pool->live_thr_num < pool->max_thr_num; i++) {
if (pool->threads[i] == 0 || !is_thread_alive(pool->threads[i])) {
pthread_create(&(pool->threads[i]), NULL, threadpool_thread, (void *)pool);
add++;
pool->live_thr_num++;
}
}
pthread_mutex_unlock(&(pool->lock));
}
if ((busy_thr_num * 2) < live_thr_num && live_thr_num > pool->min_thr_num) {
pthread_mutex_lock(&(pool->lock));
pool->wait_exit_thr_num = DEFAULT_THREAD_VARY;
pthread_mutex_unlock(&(pool->lock));
for (i = 0; i < DEFAULT_THREAD_VARY; i++) {
pthread_cond_signal(&(pool->queue_not_empty));
}
}
}
return NULL;
}
int threadpool_destroy(threadpool_t *pool)
{
int i;
if (pool == NULL) {
return -1;
}
pool->shutdown = true;
pthread_join(pool->adjust_tid, NULL);
for (i = 0; i < pool->live_thr_num; i++) {
pthread_cond_broadcast(&(pool->queue_not_empty));
pthread_join(pool->threads[i], NULL);
}
threadpool_free(pool);
return 0;
}
int threadpool_free(threadpool_t *pool)
{
if (pool == NULL) {
return -1;
}
if (pool->task_queue) {
free(pool->task_queue);
}
if (pool->threads) {
free(pool->threads);
pthread_mutex_lock(&(pool->lock));
pthread_mutex_destroy(&(pool->lock));
pthread_mutex_lock(&(pool->thread_counter));
pthread_mutex_destroy(&(pool->thread_counter));
pthread_cond_destroy(&(pool->queue_not_empty));
pthread_cond_destroy(&(pool->queue_not_full));
}
free(pool);
pool = NULL;
return 0;
}
int threadpool_all_threadnum(threadpool_t *pool)
{
int all_threadnum = -1;
pthread_mutex_lock(&(pool->lock));
all_threadnum = pool->live_thr_num;
pthread_mutex_unlock(&(pool->lock));
return all_threadnum;
}
int threadpool_busy_threadnum(threadpool_t *pool)
{
int busy_threadnum = -1;
pthread_mutex_lock(&(pool->thread_counter));
busy_threadnum = pool->busy_thr_num;
pthread_mutex_unlock(&(pool->thread_counter));
return busy_threadnum;
}
int is_thread_alive(pthread_t tid)
{
int kill_rc = pthread_kill(tid, 0);
if (kill_rc == ESRCH) {
return false;
}
return true;
}
以上是关于线程池实现原理及案列的主要内容,如果未能解决你的问题,请参考以下文章
newCacheThreadPool()newFixedThreadPool()newScheduledThreadPool()newSingleThreadExecutor()自定义线程池(代码片段