集合系列—LinkedList源码分析
Posted Java知音
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了集合系列—LinkedList源码分析相关的知识,希望对你有一定的参考价值。
技术文章第一时间送达!
http://www.cnblogs.com/liuyun1995/p/8287707.html
知音专栏
上篇我们分析了ArrayList的底层实现,知道了ArrayList底层是基于数组实现的,因此具有查找修改快而插入删除慢的特点。本篇介绍的LinkedList是List接口的另一种实现,它的底层是基于双向链表实现的,因此它具有插入删除快而查找修改慢的特点,此外,通过对双向链表的操作还可以实现队列和栈的功能。
LinkedList的底层结构如下图所示。
F表示头结点引用,L表示尾结点引用,链表的每个结点都有三个元素,分别是前继结点引用(P),结点元素的值(E),后继结点的引用(N)。结点由内部类Node表示,我们看看它的内部结构。
//结点内部类
private static class Node<E> {
E item; //元素
Node<E> next; //下一个节点
Node<E> prev; //上一个节点
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
Node这个内部类其实很简单,只有三个成员变量和一个构造器,item表示结点的值,next为下一个结点的引用,prev为上一个结点的引用,通过构造器传入这三个值。接下来再看看LinkedList的成员变量和构造器。
//集合元素个数
transient int size = 0;
//头结点引用
transient Node<E> first;
//尾节点引用
transient Node<E> last;
//无参构造器
public LinkedList() {}
//传入外部集合的构造器
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
LinkedList持有头结点的引用和尾结点的引用,它有两个构造器,一个是无参构造器,一个是传入外部集合的构造器。与ArrayList不同的是LinkedList没有指定初始大小的构造器。看看它的增删改查方法。
//增(添加)
public boolean add(E e) {
//在链表尾部添加
linkLast(e);
return true;
}
//增(插入)
public void add(int index, E element) {
checkPositionIndex(index);
if (index == size) {
//在链表尾部添加
linkLast(element);
} else {
//在链表中部插入
linkBefore(element, node(index));
}
}
//删(给定下标)
public E remove(int index) {
//检查下标是否合法
checkElementIndex(index);
return unlink(node(index));
}
//删(给定元素)
public boolean remove(Object o) {
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
//遍历链表
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item)) {
//找到了就删除
unlink(x);
return true;
}
}
}
return false;
}
//改
public E set(int index, E element) {
//检查下标是否合法
checkElementIndex(index);
//获取指定下标的结点引用
Node<E> x = node(index);
//获取指定下标结点的值
E oldVal = x.item;
//将结点元素设置为新的值
x.item = element;
//返回之前的值
return oldVal;
}
//查
public E get(int index) {
//检查下标是否合法
checkElementIndex(index);
//返回指定下标的结点的值
return node(index).item;
}
LinkedList的添加元素的方法主要是调用linkLast和linkBefore两个方法,linkLast方法是在链表后面链接一个元素,linkBefore方法是在链表中间插入一个元素。LinkedList的删除方法通过调用unlink方法将某个元素从链表中移除。下面我们看看链表的插入和删除操作的核心代码。
//链接到指定结点之前
void linkBefore(E e, Node<E> succ) {
//获取给定结点的上一个结点引用
final Node<E> pred = succ.prev;
//创建新结点, 新结点的上一个结点引用指向给定结点的上一个结点
//新结点的下一个结点的引用指向给定的结点
final Node<E> newNode = new Node<>(pred, e, succ);
//将给定结点的上一个结点引用指向新结点
succ.prev = newNode;
//如果给定结点的上一个结点为空, 表明给定结点为头结点
if (pred == null) {
//将头结点引用指向新结点
first = newNode;
} else {
//否则, 将给定结点的上一个结点的下一个结点引用指向新结点
pred.next = newNode;
}
//集合元素个数加一
size++;
//修改次数加一
modCount++;
}
//卸载指定结点
E unlink(Node<E> x) {
//获取给定结点的元素
final E element = x.item;
//获取给定结点的下一个结点的引用
final Node<E> next = x.next;
//获取给定结点的上一个结点的引用
final Node<E> prev = x.prev;
//如果给定结点的上一个结点为空, 说明给定结点为头结点
if (prev == null) {
//将头结点引用指向给定结点的下一个结点
first = next;
} else {
//将上一个结点的后继结点引用指向给定结点的后继结点
prev.next = next;
//将给定结点的上一个结点置空
x.prev = null;
}
//如果给定结点的下一个结点为空, 说明给定结点为尾结点
if (next == null) {
//将尾结点引用指向给定结点的上一个结点
last = prev;
} else {
//将下一个结点的前继结点引用指向给定结点的前继结点
next.prev = prev;
x.next = null;
}
//将给定结点的元素置空
x.item = null;
//集合元素个数减一
size--;
//修改次数加一
modCount++;
return element;
}
linkBefore和unlink是具有代表性的链接结点和卸载结点的操作,其他的链接和卸载两端结点的方法与此类似,所以我们重点介绍linkBefore和unlink方法。
linkBefore方法的过程图:
unlink方法的过程图:
通过上面图示看到对链表的插入和删除操作的时间复杂度都是O(1),而对链表的查找和修改操作都需要遍历链表进行元素的定位,这两个操作都是调用的node(int index)方法定位元素,看看它是怎样通过下标来定位元素的。
//根据指定位置获取结点
Node<E> node(int index) {
//如果下标在链表前半部分, 就从头开始查起
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++) {
x = x.next;
}
return x;
} else {
//如果下标在链表后半部分, 就从尾开始查起
Node<E> x = last;
for (int i = size - 1; i > index; i--) {
x = x.prev;
}
return x;
}
}
通过下标定位时先判断是在链表的上半部分还是下半部分,如果是在上半部分就从头开始找起,如果是下半部分就从尾开始找起,因此通过下标的查找和修改操作的时间复杂度是O(n/2)。通过对双向链表的操作还可以实现单项队列,双向队列和栈的功能。
单向队列操作:
//获取头结点
public E peek() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
//获取头结点
public E element() {
return getFirst();
}
//弹出头结点
public E poll() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
//移除头结点
public E remove() {
return removeFirst();
}
//在队列尾部添加结点
public boolean offer(E e) {
return add(e);
}
双向队列操作:
//在头部添加
public boolean offerFirst(E e) {
addFirst(e);
return true;
}
//在尾部添加
public boolean offerLast(E e) {
addLast(e);
return true;
}
//获取头结点
public E peekFirst() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
//获取尾结点
public E peekLast() {
final Node<E> l = last;
return (l == null) ? null : l.item;
}
栈操作:
//入栈
public void push(E e) {
addFirst(e);
}
//出栈
public E pop() {
return removeFirst();
}
不管是单向队列还是双向队列还是栈,其实都是对链表的头结点和尾结点进行操作,它们的实现都是基于addFirst(),addLast(),removeFirst(),removeLast()这四个方法,它们的操作和linkBefore()和unlink()类似,只不过一个是对链表两端操作,一个是对链表中间操作。可以说这四个方法都是linkBefore()和unlink()方法的特殊情况,因此不难理解它们的内部实现,在此不多做介绍。到这里,我们对LinkedList的分析也即将结束,对全文中的重点做个总结:
LinkedList是基于双向链表实现的,不论是增删改查方法还是队列和栈的实现,都可通过操作结点实现
LinkedList无需提前指定容量,因为基于链表操作,集合的容量随着元素的加入自动增加
LinkedList删除元素后集合占用的内存自动缩小,无需像ArrayList一样调用trimToSize()方法
LinkedList的所有方法没有进行同步,因此它也不是线程安全的,应该避免在多线程环境下使用
以上分析基于JDK1.7,其他版本会有些出入,因此不能一概而论。
以上是关于集合系列—LinkedList源码分析的主要内容,如果未能解决你的问题,请参考以下文章
Java 集合系列08之 List总结(LinkedList, ArrayList等使用场景和性能分析)
Java 集合系列05之 LinkedList详细介绍(源码解析)和使用示例