百万连接,百亿吞吐量服务的JVM性能调优实战

Posted 占小狼的博客

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了百万连接,百亿吞吐量服务的JVM性能调优实战相关的知识,希望对你有一定的参考价值。

应用:shark-新美大移动端网络优化(每日接受移动端请求约150亿)

应用特点:

  1. qps比较高,新生代增长飞快

  2. 用户的连接需要维持一段时间

  3. 单机需要维持海量连接,几十万的级别

以上三个特点导致有大量小对象聚集在old区,高峰期old区域增长非常快,对象在一段时间内肯定会消亡


初始的线上gc的情况如下

对应的jvm参数为

 
   
   
 
  1. -Xms10g -Xmx10g -Xss512k -XX:PermSize=384m -XX:MaxPermSize=384m -XX:NewSize=7g -XX:MaxNewSize=7g

  2. -XX:SurvivorRatio=8 -XX:MaxDirectMemorySize=4g -XX:+UseParNewGC -XX:ParallelGCThreads=4

  3. -XX:MaxTenuringThreshold=9 -XX:+UseConcMarkSweepGC -XX:+DisableExplicitGC -XX:+UseCMSInitiatingOccupancyOnly

  4. -XX:+ScavengeBeforeFullGC -XX:+UseCMSCompactAtFullCollection -XX:+CMSParallelRemarkEnabled

  5. -XX:CMSFullGCsBeforeCompaction=9 -XX:CMSInitiatingOccupancyFraction=70

可以看到新生代为7G(其中Survivor为2*700M),老年代为3G,对象年龄居然只有9(导致new 区域进入到old区域的速度太快,old区域很快被撑满,频繁old gc),考虑到我这边的对象在一段时间内(几分钟)肯定会消亡,于是先进行一次调优尝试

第一次调优

将年龄调成无穷,调大young区

对应的jvm参数为

 
   
   
 
  1. -Xms14g -Xmx14g -Xss512k -XX:PermSize=384m -XX:MaxPermSize=384m -XX:NewSize=12g -XX:MaxNewSize=12g

  2. -XX:SurvivorRatio=18 -XX:MaxDirectMemorySize=2g -XX:+UseParNewGC -XX:ParallelGCThreads=4

  3. -XX:MaxTenuringThreshold=30 -XX:+UseConcMarkSweepGC -XX:+DisableExplicitGC -XX:+UseCMSInitiatingOccupancyOnly

  4. -XX:+ScavengeBeforeFullGC -XX:+UseCMSCompactAtFullCollection -XX:+CMSParallelRemarkEnabled

  5. -XX:CMSFullGCsBeforeCompaction=9 -XX:CMSInitiatingOccupancyFraction=70 -XX:+CMSClassUnloadingEnabled

  6. -XX:SoftRefLRUPolicyMSPerMB=0 -XX:-ReduceInitialCardMarks -XX:+CMSPermGenSweepingEnabled

  7. -XX:CMSInitiatingPermOccupancyFraction=70

结果old区域一直为空,但是yong gc时间拉长许多,平均每次都要0.2s的时间,比之前的new gc多了整整三倍,是无法接受的百万连接,百亿吞吐量服务的JVM性能调优实战

关于设置-XX:MaxTenuringThreshold大于15,在jdk1.7某个版本之前表示是无穷大,之后不管设置成多少,都是15,jdk1.8之后大于15直接报错 见 http://mail.openjdk.java.net/pipermail/hotspot-gc-dev/2008-May/000309.html

第二次调优

将XX:MaxTenuringThreshold调整回来,调整成最大的值15(大于15即对象长命百岁),由于之前cms 在old gc花的时间比较多,所以这里尝试的serial old

对应的jvm参数为

 
   
   
 
  1. -Xms14g -Xmx14g -Xss512k -XX:PermSize=384m -XX:MaxPermSize=384m -XX:NewSize=12g -XX:MaxNewSize=12g

  2. -XX:SurvivorRatio=18 -XX:MaxDirectMemorySize=2g -XX:+UseParNewGC -XX:ParallelGCThreads=4

  3. -XX:MaxTenuringThreshold=15

发现效果确实比较明显,new gc的时间缩小了两倍左右,并且old gc的时间也从原来的15000ms 缩小到1500ms

百万连接,百亿吞吐量服务的JVM性能调优实战

第三次调优

仔细研究了一下第二种调优方式的组合,yong区域使用parNew 的方式,old区域使用serial old 的方式,如果在其他条件都相同的条件下使用parNew+cms的方式,old gc的时间会不会大幅度缩短?毕竟cms还是比较先进的收集器,于是分析了一下cms的几个阶段,有两个阶段是stop the world的,一个是初始化标记(intial mark),一个是重复标记(cms remark),重复标记的原因是从cms old gc开始的那一刻到开始清除可能很多对象的状态都产生了变化,所以这个时候需要暂停用户所有的线程,来一次标记再清除

查看gc日志,发现remark的时间比较长,日志上下文如下

 
   
   
 
  1. {Heap before GC invocations=23679 (full 18):

  2. par new generation   total 6606080K, used 5902124K [0x0000000568000000, 0x0000000728000000, 0x0000000728000000)

  3. eden space 5872128K,  99% used [0x0000000568000000, 0x00000006ce54f988, 0x00000006ce680000)

  4. from space 733952K,   4% used [0x00000006fb340000, 0x00000006fd1bb758, 0x0000000728000000)

  5. to   space 733952K,   0% used [0x00000006ce680000, 0x00000006ce680000, 0x00000006fb340000)

  6. concurrent mark-sweep generation total 3145728K, used 2200878K [0x0000000728000000, 0x00000007e8000000, 0x00000007e8000000)

  7. concurrent-mark-sweep perm gen total 393216K, used 37361K [0x00000007e8000000, 0x0000000800000000, 0x0000000800000000)

  8. 2016-08-27T17:26:00.058+0800: 261980.413: [GC2016-08-27T17:26:00.058+0800: 261980.413: [ParNew: 5902124K->27858K(6606080K), 0.0464930 secs] 8103002K->2230601K(9751808K), 0.0468010 secs] [Times: user=0.18 sys=0.00, real=0.05 secs]

  9. Heap after GC invocations=23680 (full 18):

  10. par new generation   total 6606080K, used 27858K [0x0000000568000000, 0x0000000728000000, 0x0000000728000000)

  11. eden space 5872128K,   0% used [0x0000000568000000, 0x0000000568000000, 0x00000006ce680000)

  12. from space 733952K,   3% used [0x00000006ce680000, 0x00000006d01b4910, 0x00000006fb340000)

  13. to   space 733952K,   0% used [0x00000006fb340000, 0x00000006fb340000, 0x0000000728000000)

  14. concurrent mark-sweep generation total 3145728K, used 2202742K [0x0000000728000000, 0x00000007e8000000, 0x00000007e8000000)

  15. concurrent-mark-sweep perm gen total 393216K, used 37361K [0x00000007e8000000, 0x0000000800000000, 0x0000000800000000)

  16. }

  17. 2016-08-27T17:26:00.107+0800: 261980.462: Application time: 0.0014750 seconds

  18. 2016-08-27T17:26:00.108+0800: 261980.463: [GC [1 CMS-initial-mark: 2202742K(3145728K)] 2235571K(9751808K), 0.0561400 secs] [Times: user=0.05 sys=0.00, real=0.05 secs]

  19. 2016-08-27T17:26:00.165+0800: 261980.520: [CMS-concurrent-mark-start]

  20. 2016-08-27T17:26:00.918+0800: 261981.273: [CMS-concurrent-mark: 0.753/0.754 secs] [Times: user=1.27 sys=0.12, real=0.76 secs]

  21. 2016-08-27T17:26:00.918+0800: 261981.273: [CMS-concurrent-preclean-start]

  22. 2016-08-27T17:26:00.949+0800: 261981.304: [CMS-concurrent-preclean: 0.028/0.031 secs] [Times: user=0.04 sys=0.01, real=0.03 secs]

  23. 2016-08-27T17:26:00.949+0800: 261981.304: [CMS-concurrent-abortable-preclean-start]

  24. CMS: abort preclean due to time 2016-08-27T17:26:06.159+0800: 261986.514: [CMS-concurrent-abortable-preclean: 5.197/5.210 secs] [Times: user=8.31 sys=0.66, real=5.21 secs]

  25. 2016-08-27T17:26:06.160+0800: 261986.515: Application time: 5.9951640 seconds

  26. 2016-08-27T17:26:06.161+0800: 261986.516: [GC[YG occupancy: 4756927 K (6606080 K)]2016-08-27T17:26:06.161+0800: 261986.516: [Rescan (parallel) , 18.1621480 secs]2016-08-27T17:26:24.323+0800: 262004.678: [weak refs processing, 0.0000750 secs]2016-08-27T17:26:24.323+0800: 262004.678: [class unloading, 0.0069760 secs]2016-08-27T17:26:24.330+0800: 262004.685: [scrub symbol table, 0.0040020 secs]2016-08-27T17:26:24.334+0800: 262004.689: [scrub string table, 0.0009240 secs] [1 CMS-remark: 2202742K(3145728K)] 6959670K(9751808K), 18.1769610 secs] [Times: user=71.37 sys=0.06, real=18.18 secs]

  27. 2016-08-27T17:26:24.338+08002016-08-27T17:26:24.338+0800: : 262004.693: Application time: 0.0002080 seconds

  28. 262004.693: [CMS-concurrent-sweep-start]

  29. 2016-08-27T17:26:24.347+0800: 262004.702: Application time: 0.0079820 seconds

  30. 2016-08-27T17:26:24.868+0800: 262005.223: Application time: 0.5186580 seconds

  31. {Heap before GC invocations=23680 (full 19):

  32. par new generation   total 6606080K, used 5899299K [0x0000000568000000, 0x0000000728000000, 0x0000000728000000)

  33. eden space 5872128K,  99% used [0x0000000568000000, 0x00000006ce5d44b8, 0x00000006ce680000)

  34. from space 733952K,   3% used [0x00000006ce680000, 0x00000006d01b4910, 0x00000006fb340000)

  35. to   space 733952K,   0% used [0x00000006fb340000, 0x00000006fb340000, 0x0000000728000000)

  36. concurrent mark-sweep generation total 3145728K, used 1891716K [0x0000000728000000, 0x00000007e8000000, 0x00000007e8000000)

  37. concurrent-mark-sweep perm gen total 393216K, used 37361K [0x00000007e8000000, 0x0000000800000000, 0x0000000800000000)

  38. 2016-08-27T17:26:24.870+0800: 262005.225: [GC2016-08-27T17:26:24.870+0800: 262005.225: [ParNew: 5899299K->56108K(6606080K), 0.0580910 secs] 7791015K->1949708K(9751808K), 0.0584000 secs] [Times: user=0.22 sys=0.01, real=0.05 secs]

  39. Heap after GC invocations=23681 (full 19):

  40. par new generation   total 6606080K, used 56108K [0x0000000568000000, 0x0000000728000000, 0x0000000728000000)

  41. eden space 5872128K,   0% used [0x0000000568000000, 0x0000000568000000, 0x00000006ce680000)

  42. from space 733952K,   7% used [0x00000006fb340000, 0x00000006fea0b1f8, 0x0000000728000000)

  43. to   space 733952K,   0% used [0x00000006ce680000, 0x00000006ce680000, 0x00000006fb340000)

  44. concurrent mark-sweep generation total 3145728K, used 1893599K [0x0000000728000000, 0x00000007e8000000, 0x00000007e8000000)

  45. concurrent-mark-sweep perm gen total 393216K, used 37361K [0x00000007e8000000, 0x0000000800000000, 0x0000000800000000)

  46. }

重新标记居然用了18s(这一段[1 CMS-remark: 2202742K(3145728K)] 6959670K(9751808K), 18.1769610 secs])!重新标记的时候,old区域的大小是固定的(这里设置成old区域的70%),按理说每次remark的时间应该都差不多才对,但是查了很多cms old gc日志,发现高峰期和低峰期remark的时间相差太大,两者的区别也只有elden区域,因为我这里elden的设置是比较大的,高峰期的时候,一次cms old开始,到remark之间这段时间,用户程序会和gc线程同步执行,到remark的时候,eden区很可能已经有大量对象了,如果remark之前能把eden区域的对象都清理一遍,那remark的对象将会少很多很多对吧?google了一把,发现cms有这么个参数-XX:+CMSScavengeBeforeRemark,这玩意的意思是在remark之前,来一次yong gc,满足我们的要求,加了这个参数之后,对应的jvm参数为

 
   
   
 
  1. -Xms14g -Xmx14g -Xss512k -XX:PermSize=384m -XX:MaxPermSize=384m -XX:NewSize=12g -XX:MaxNewSize=12g

  2. -XX:SurvivorRatio=18 -XX:MaxDirectMemorySize=2g -XX:+UseParNewGC -XX:ParallelGCThreads=4

  3. -XX:MaxTenuringThreshold=15  -XX:+CMSScavengeBeforeRemark -XX:+UseConcMarkSweepGC -XX:+DisableExplicitGC

  4. -XX:+UseCMSInitiatingOccupancyOnly -XX:+ScavengeBeforeFullGC -XX:+UseCMSCompactAtFullCollection

  5. -XX:+CMSParallelRemarkEnabled -XX:CMSFullGCsBeforeCompaction=9 -XX:CMSInitiatingOccupancyFraction=70

效果如下

发现old gc的时间缩小到原来cms的1/100,窃喜。接下来分析gc日志,来验证我的猜想

 
   
   
 
  1. {Heap before GC invocations=4644 (full 6):

  2. par new generation   total 11953792K, used 11384636K [0x0000000468000000, 0x0000000768000000, 0x0000000768000000)

  3.  eden space 11324672K,  99% used [0x0000000468000000, 0x000000071b30eb48, 0x000000071b340000)

  4.  from space 629120K,   9% used [0x000000071b340000, 0x000000071ee004e0, 0x00000007419a0000)

  5.  to   space 629120K,   0% used [0x00000007419a0000, 0x00000007419a0000, 0x0000000768000000)

  6. concurrent mark-sweep generation total 2097152K, used 1464467K [0x0000000768000000, 0x00000007e8000000, 0x00000007e8000000)

  7. concurrent-mark-sweep perm gen total 393216K, used 37291K [0x00000007e8000000, 0x0000000800000000, 0x0000000800000000)

  8. 2016-08-28T10:46:09.846+0800: 68434.688: [GC2016-08-28T10:46:09.846+0800: 68434.688: [ParNew: 11384636K->61763K(11953792K), 0.0716150 secs] 12849103K->1528727K(14050944K), 0.0719060 secs] [Times: user=0.28 sys=0.00, real=0.07 secs]

  9. Heap after GC invocations=4645 (full 6):

  10. par new generation   total 11953792K, used 61763K [0x0000000468000000, 0x0000000768000000, 0x0000000768000000)

  11.  eden space 11324672K,   0% used [0x0000000468000000, 0x0000000468000000, 0x000000071b340000)

  12.  from space 629120K,   9% used [0x00000007419a0000, 0x00000007455f0dd8, 0x0000000768000000)

  13.  to   space 629120K,   0% used [0x000000071b340000, 0x000000071b340000, 0x00000007419a0000)

  14. concurrent mark-sweep generation total 2097152K, used 1466964K [0x0000000768000000, 0x00000007e8000000, 0x00000007e8000000)

  15. concurrent-mark-sweep perm gen total 393216K, used 37291K [0x00000007e8000000, 0x0000000800000000, 0x0000000800000000)

  16. }

  17. 2016-08-28T10:46:19.590+0800: 68444.431: Application time: 9.6715460 seconds

  18. {Heap before GC invocations=4645 (full 6):

  19. par new generation   total 11953792K, used 11384705K [0x0000000468000000, 0x0000000768000000, 0x0000000768000000)

  20.  eden space 11324672K,  99% used [0x0000000468000000, 0x000000071b18f768, 0x000000071b340000)

  21.  from space 629120K,   9% used [0x00000007419a0000, 0x00000007455f0dd8, 0x0000000768000000)

  22.  to   space 629120K,   0% used [0x000000071b340000, 0x000000071b340000, 0x00000007419a0000)

  23. concurrent mark-sweep generation total 2097152K, used 1466964K [0x0000000768000000, 0x00000007e8000000, 0x00000007e8000000)

  24. concurrent-mark-sweep perm gen total 393216K, used 37291K [0x00000007e8000000, 0x0000000800000000, 0x0000000800000000)

  25. 2016-08-28T10:46:19.591+0800: 68444.433: [GC2016-08-28T10:46:19.591+0800: 68444.433: [ParNew: 11384705K->69180K(11953792K), 0.0728020 secs] 12851669K->1538700K(14050944K), 0.0730170 secs] [Times: user=0.27 sys=0.01, real=0.07 secs]

  26. Heap after GC invocations=4646 (full 6):

  27. par new generation   total 11953792K, used 69180K [0x0000000468000000, 0x0000000768000000, 0x0000000768000000)

  28.  eden space 11324672K,   0% used [0x0000000468000000, 0x0000000468000000, 0x000000071b340000)

  29.  from space 629120K,  10% used [0x000000071b340000, 0x000000071f6cf378, 0x00000007419a0000)

  30.  to   space 629120K,   0% used [0x00000007419a0000, 0x00000007419a0000, 0x0000000768000000)

  31. concurrent mark-sweep generation total 2097152K, used 1469519K [0x0000000768000000, 0x00000007e8000000, 0x00000007e8000000)

  32. concurrent-mark-sweep perm gen total 393216K, used 37291K [0x00000007e8000000, 0x0000000800000000, 0x0000000800000000)

  33. }

  34. 2016-08-28T10:46:19.666+0800: 68444.508: Application time: 0.0019110 seconds

  35. 2016-08-28T10:46:19.667+0800: 68444.509: [GC [1 CMS-initial-mark: 1469519K(2097152K)] 1545525K(14050944K), 0.0869600 secs] [Times: user=0.09 sys=0.00, real=0.08 secs]

  36. 2016-08-28T10:46:19.755+0800: 68444.597: [CMS-concurrent-mark-start]

  37. 2016-08-28T10:46:20.418+0800: 68445.260: [CMS-concurrent-mark: 0.663/0.663 secs] [Times: user=1.47 sys=0.24, real=0.66 secs]

  38. 2016-08-28T10:46:20.418+0800: 68445.260: [CMS-concurrent-preclean-start]

  39. 2016-08-28T10:46:20.438+0800: 68445.280: [CMS-concurrent-preclean: 0.018/0.020 secs] [Times: user=0.04 sys=0.01, real=0.02 secs]

  40. 2016-08-28T10:46:20.438+0800: 68445.280: [CMS-concurrent-abortable-preclean-start]

  41. 2016-08-28T10:46:24.542+0800: 68449.384: [CMS-concurrent-abortable-preclean: 4.090/4.104 secs] [Times: user=8.60 sys=1.40, real=4.10 secs]

  42. 2016-08-28T10:46:24.543+0800: 68449.385: Application time: 4.7880220 seconds

  43. // 这里在remark之前进行一次young gc

  44. =====================yong gc开始=====================

  45. 2016-08-28T10:46:24.544+0800: 68449.386: [GC[YG occupancy: 5803756 K (11953792 K)]{Heap before GC invocations=4646 (full 7):

  46. par new generation   total 11953792K, used 5803756K [0x0000000468000000, 0x0000000768000000, 0x0000000768000000)

  47.  eden space 11324672K,  50% used [0x0000000468000000, 0x00000005c602bd88, 0x000000071b340000)

  48.  from space 629120K,  10% used [0x000000071b340000, 0x000000071f6cf378, 0x00000007419a0000)

  49.  to   space 629120K,   0% used [0x00000007419a0000, 0x00000007419a0000, 0x0000000768000000)

  50. concurrent mark-sweep generation total 2097152K, used 1469519K [0x0000000768000000, 0x00000007e8000000, 0x00000007e8000000)

  51. concurrent-mark-sweep perm gen total 393216K, used 37291K [0x00000007e8000000, 0x0000000800000000, 0x0000000800000000)

  52. 2016-08-28T10:46:24.544+0800: 68449.386: [GC2016-08-28T10:46:24.544+0800: 68449.386: [ParNew: 5803756K->70533K(11953792K), 0.0668770 secs] 7273276K->1542365K(14050944K), 0.0669610 secs] [Times: user=0.25 sys=0.01, real=0.07 secs]

  53. Heap after GC invocations=4647 (full 7):

  54. par new generation   total 11953792K, used 70533K [0x0000000468000000, 0x0000000768000000, 0x0000000768000000)

  55.  eden space 11324672K,   0% used [0x0000000468000000, 0x0000000468000000, 0x000000071b340000)

  56. from space 629120K,  11% used [0x00000007419a0000, 0x0000000745e81738, 0x0000000768000000)

  57.  to   space 629120K,   0% used [0x000000071b340000, 0x000000071b340000, 0x00000007419a0000)

  58. concurrent mark-sweep generation total 2097152K, used 1471831K [0x0000000768000000, 0x00000007e8000000, 0x00000007e8000000)

  59. concurrent-mark-sweep perm gen total 393216K, used 37291K [0x00000007e8000000, 0x0000000800000000, 0x0000000800000000)

  60. }

  61. =====================yong gc结束,开始remark=================

  62. 2016-08-28T10:46:24.611+0800: 68449.453: [Rescan (parallel) , 0.0392690 secs]2016-08-28T10:46:24.650+0800: 68449.492: [weak refs processing, 0.0001190 secs]2016-08-28T10:46:24.650+0800: 68449.492: [class unloading, 0.0072200 secs]2016-08-28T10:46:24.658+0800: 68449.500: [scrub symbol table, 0.0083430 secs]2016-08-28T10:46:24.666+0800: 68449.508: [scrub string table, 0.0011760 secs] [1 CMS-remark: 1471831K(2097152K)] 1542365K(14050944K), 0.1264420 secs] [Times: user=0.42 sys=0.01, real=0.13 secs]

  63. 2016-08-28T10:46:24.671+0800: 68449.513: [CMS-concurrent-sweep-start]

  64. 2016-08-28T10:46:24.672+0800: 68449.514: Application time: 0.0018070 seconds

  65. 2016-08-28T10:46:26.388+0800: 68451.230: [CMS-concurrent-sweep: 1.714/1.717 secs] [Times: user=3.70 sys=0.58, real=1.72 secs]

  66. 2016-08-28T10:46:26.388+0800: 68451.230: [CMS-concurrent-reset-start]

  67. 2016-08-28T10:46:26.396+0800: 68451.238: [CMS-concurrent-reset: 0.007/0.007 secs] [Times: user=0.02 sys=0.00, real=0.01 secs]

  68. 2016-08-28T10:46:34.434+0800: 68459.276: Application time: 9.7600810 seconds

可以看到,在remark之前,来一次yong gc,eden区域从50%降到0(总大小为10.8G),这些空间如果不消除,那么cms将会在这些空间上进行非常耗时的标记,最后再看看remark的时间

[1 CMS-remark: 1471831K(2097152K)] 1542365K(14050944K), 0.1264420 secs],降到0.1264420s,和原来相比,整整一百倍的提高。

总结:

最后,对于长连接,push一类的海量服务端应用,16G内存8核心,推荐的JVM参数如下 jdk 1.7 14g->13g

 
   
   
 
  1. -Xms13g -Xmx13g -Xss512k -XX:PermSize=384m -XX:MaxPermSize=384m -XX:NewSize=12g -XX:MaxNewSize=12g

  2. -XX:SurvivorRatio=18 -XX:MaxDirectMemorySize=2g -XX:+UseParNewGC -XX:ParallelGCThreads=4

  3. -XX:MaxTenuringThreshold=15 -XX:+CMSParallelRemarkEnabled -XX:+CMSScavengeBeforeRemark -XX:+UseConcMarkSweepGC

  4. -XX:+DisableExplicitGC -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=70

  5. -XX:+ScavengeBeforeFullGC -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=9 

  6. -XX:+CMSClassUnloadingEnabled  -XX:CMSInitiatingPermOccupancyFraction=70 -XX:+ExplicitGCInvokesConcurrent 

  7. -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCApplicationConcurrentTime -XX:+PrintHeapAtGC

  8. -Xloggc:/data/applogs/heap_trace.txt -XX:-HeapDumpOnOutOfMemoryError

  9. -XX:HeapDumpPath=/data/applogs/HeapDumpOnOutOfMemoryError

jdk1.8

 
   
   
 
  1. -Xms13g -Xmx13g -Xss512k -XX:MetaspaceSize=384m -XX:MaxMetaspaceSize=384m -XX:NewSize=11g -XX:MaxNewSize=11g -XX:SurvivorRatio=18 -XX:MaxDirectMemorySize=2g -XX:+UseParNewGC -XX:ParallelGCThreads=4 -XX:MaxTenuringThreshold=15 -XX:+UseConcMarkSweepGC -XX:+DisableExplicitGC -XX:+UseCMSInitiatingOccupancyOnly -XX:+ScavengeBeforeFullGC -XX:+CMSScavengeBeforeRemark -XX:+CMSParallelRemarkEnabled -XX:CMSInitiatingOccupancyFraction=70 -XX:+CMSClassUnloadingEnabled -XX:SoftRefLRUPolicyMSPerMB=0 -XX:-ReduceInitialCardMarks -XX:+CMSClassUnloadingEnabled -XX:+ExplicitGCInvokesConcurrent -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCApplicationConcurrentTime -XX:+PrintHeapAtGC -Xloggc:/data/applogs/heap_trace.txt -XX:-HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/data/applogs/HeapDumpOnOutOfMemoryError"

这样可以保证大多数对象在new区域就销毁,并且到了old区,remark之前先yong gc,然后再来一次cms old gc,将old gc控制在毫秒级别

如果你觉得看的不过瘾,想系统学习Netty原理,那么你一定不要错过我的Netty源码分析系列视频:

https://coding.imooc.com/class/230.html



《》


更多精彩问题,欢迎加入知识星球

460+小伙伴正在讨论


以上是关于百万连接,百亿吞吐量服务的JVM性能调优实战的主要内容,如果未能解决你的问题,请参考以下文章

那些好用数据库连接池JVM调优实战开源项目分享

JVM调优经验分享

JVM调优经验分享

深入理解JVM——JVM性能调优实战

基于dubbo服务性能调优实战

深入理解 JVM ------ 调优案例分析与实战