MQ之主流MQ:kafaka+RocketMQ+RabbitMQ对比

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MQ之主流MQ:kafaka+RocketMQ+RabbitMQ对比相关的知识,希望对你有一定的参考价值。

参考技术A @TOC

消息队列已经逐渐成为企业IT系统内部通信的核心手段。它具有低耦合、可靠投递、广播、流量控制、最终一致性等一系列功能,成为异步RPC的主要手段之一。当今市面上有很多主流的消息中间件,如老牌的ActiveMQ、RabbitMQ,炙手可热的Kafka,阿里巴巴自主开发RocketMQ等。

有些业务不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

降低工程间的强依赖程度,针对异构系统进行适配。在项目启动之初来预测将来项目会碰到什么需求,是极其困难的。通过消息系统在处理过程中间插入了一个隐含的、基于数据的接口层,两边的处理过程都要实现这一接口,当应用发生变化时,可以独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

有些情况下,处理数据的过程会失败。除非数据被持久化,否则将造成丢失。消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的”插入-获取-删除”范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。

因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。不需要改变代码、不需要调节参数。便于分布式扩容。

在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量无法提取预知;如果以为了能处理这类瞬间峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。

在大多使用场景下,数据处理的顺序都很重要。大部分消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。

在任何重要的系统中,都会有需要不同的处理时间的元素。消息队列通过一个缓冲层来帮助任务最高效率的执行,该缓冲有助于控制和优化数据流经过系统的速度。以调节系统响应时间。

分布式系统产生的海量数据流,如:业务日志、监控数据、用户行为等,针对这些数据流进行实时或批量采集汇总,然后进行大数据分析是当前互联网的必备技术,通过消息队列完成此类数据收集是最好的选择。

交互系统之间没有直接的调用关系,只是通过消息传输,故系统侵入性不强,耦合度低。

例如原来的一套逻辑,完成支付可能涉及先修改订单状态、计算会员积分、通知物流配送几个逻辑才能完成;通过MQ架构设计,就可将紧急重要(需要立刻响应)的业务放到该调用方法中,响应要求不高的使用消息队列,放到MQ队列中,供消费者处理。

通过消息作为整合,大数据的背景下,消息队列还与实时处理架构整合,为数据处理提供性能支持。

项目的复杂度提高

MQ的高度依赖

AMQP即Advanced Message Queuing Protocol,一个提供统一消息服务的应用层标准高级消息队列协议,是应用层协议的一个开放标准,为面向消息的中间件设计。基于此协议的客户端与消息中间件可传递消息,并不受客户端/中间件不同产品,不同开发语言等条件的限制。 优点:可靠、通用

MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议,有可能成为物联网的重要组成部分。该协议支持所有平台,几乎可以把所有联网物品和外部连接起来,被用来当做传感器和致动器(比如通过Twitter让房屋联网)的通信协议。 优点:格式简洁、占用带宽小、移动端通信、PUSH、嵌入式系统

STOMP(Streaming Text Orientated Message Protocol)是流文本定向消息协议,是一种为MOM(Message Oriented Middleware,面向消息的中间件)设计的简单文本协议。STOMP提供一个可互操作的连接格式,允许客户端与任意STOMP消息代理(Broker)进行交互。 优点:命令模式(非topicqueue模式)

XMPP(可扩展消息处理现场协议,Extensible Messaging and Presence Protocol)是基于可扩展标记语言(XML)的协议,多用于即时消息(IM)以及在线现场探测。适用于服务器之间的准即时操作。核心是基于XML流传输,这个协议可能最终允许因特网用户向因特网上的其他任何人发送即时消息,即使其操作系统和浏览器不同。 优点:通用公开、兼容性强、可扩展、安全性高,但XML编码格式占用带宽大

有些特殊框架(如:redis、kafka、zeroMq等)根据自身需要未严格遵循MQ规范,而是基于TCPIP自行封装了一套协议,通过网络socket接口进行传输,实现了MQ的功能。

参考:

https://blog.csdn.net/wqc19920906/article/details/82193316

消息队列(MQ)与kafaka概述(Filebeat+Kafka+ELK部署)

一、消息队列(MQ)概述

1、为什么需要消息队列(MQ) ?

  • 主要原因是由于在高并发环境下,同步请求来不及处理,请求往往会发生阻塞。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过多,从而触发too many connection 错误,引发雪崩效应。
  • 我们使用消息队列,通过异步处理请求,从而缓解系统的压力。消息队列常应用于异步处理,流量削峰,应用解耦,消息通讯等场景。
  • 当前比较常见的MQ中间件有ActiveMQ、RabbitMQ、RocketMQ、Kafka 等。

2、使用消息队列的好处

(1)解耦

  • 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。
  • 类似于点外卖,消费者会将信息发送给外卖平台( MQ),平台会根据分发策略发送给外卖商家。

(2)可恢复性

  • 系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。

(3)缓冲

  • 有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一-致的情况。

(4)灵活性&峰值处理能力

  • 在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见。如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

(5) 异步处理机制

  • 异步通信很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

3、消息队列的两种模式

(1)点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)

  • 消息生产者生产消息发送到消息队列中,然后消息消费者从消息队列中取出并且消费消息。消息被消费以后,消息队列中不再有存储,所以消息消费者不可能消费到已经被消费的消息。消息队列支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。

(2)发布/订阅模式(一对多,又叫观察者模式,消费者消费数据之后不会清除消息)

  • 消息生产者(发布)将消息发布到topic 中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到topic的消息会被所有订阅者消费。
  • 发布/订阅模式是定义对象间一种一对多的依赖关系,使得每当一个对象(目标对象)的状态发生改变,则所有依赖于它的对象(观察者对象)都会得到通知并自动更新。


类似于生产者消费者模式

二、Kafka定义

  • Kafka是一个分布式的基于发布/订阅模式的消息队列(MQ,MessageQueue),主要应用于大数据实时处理领域。

1、Kafka简介

  • Kafka是最初由Linkedin 公司开发,是一个分布式、支持分区的(partition) 、多副本的(replica) ,基于Zookeeper协调的分布式消息中间件系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景,比如基于hadoop的批处理系统、低延迟的实时系统、Spark/Flink 流式处理引擎,nginx 访问日志,消息服务等等,用scala 语言编写,Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目。

2、Kafka 的特性

高吞吐量、低延迟

  • Kafka 每秒可以处理几十万条消息,它的延迟最低只有几毫秒。每个topic 可以分多个Partition, Consumer Group 对Partition进行消费操作,提高负载均衡能力和消费能力。

可扩展性

  • kafka集群支持热扩展

持久性、可靠性

  • 消息被持久化到本地磁盘,并且支持数据备份防止数据丢失

容错性

  • 允许集群中节点失败(多副本情况下,若副本数量为n,则允许n-1个节点失败)

高并发

  • 支持数千个客户端同时读写

3、kafaka系统架构

(1) Broker

  • 一台kafka 服务器就是一个broker,一个集群由多个broker 组成。一个broker 可以容纳多个topic。

(2) Topic

  • 可以理解为一个队列,生产者和消费者面向的都是一个topic
  • 类似于数据库的表名或者ES的index
  • 物理上不同topic的消息分开存储

(3) Partition

  • 为了实现扩展性,一个非常大的topic 可以分布到多个broker (即服务器)上,一个topic 可以分割为一个或多个partition,每个partition是一个有序的队列。Kafka 只保证partition内的记录是有序的,而不保证topic 中不同partition的顺序。

  • 每个topic至少有一个partition,当生产者产生数据的时候,会根据分配策略选择分区,然后将消息追加到指定的分区的队列末尾。

  • Partation数据路由规则:

    • 1.指定了patition, 则直接使用;
    • 2.未指定patition但指定key (相当于消息中某个属性),通过对key 的value进行hash 取模,选出一个patition;
    • 3.patition和key都未指定,使用轮询选出一个patition。
  • 每条消息都会有一个自增的编号,用于标识消息的偏移量,标识顺序从0开始。

  • 每个partition 中的数据使用多个segment 文件存储。

  • 如果topic有多个partition,消费数据时就不能保证数据的顺序。严格保证消息的消费顺序的场景下(例如商品秒杀、抢红包),需要将partition 数目设为1。

●broker存储topic 的数据。如果某topic 有N个partition, 集群有N个broker,那么每个broker存储该topic 的一一个partition。
●如果某topic有N个partition, 集群有(N+M) 个broker,
那么其中有N个broker 存储topic 的一-个partition, 剩下的M个broker 不存储该topic 的partition数据。
●如果某topic 有N个partition, 集群中broker 数目少于N个,那么一个broker 存储该topic的一个或多个 partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致Kafka集群数据不均衡。

//分区的原因
●方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;
●可以提高并发,因为可以以Partition为单位读写了。

(4) Leader

  • 每个partition 有多个副本,其中有且仅有一个作为Leader, Leader 是当前负责数据的读写的partition。

(5) Follower

  • Follower跟随Leader, 所有写请求都通过Leader 路由,数据变更会广播给所有Follower, Follower 与Leader保持数据同步。Follower 只负责备份,不负责数据的读写。
  • 如果Leader 故障,则从Follower 中选举出一个新的Leader。
  • 当Follower 挂掉、卡住或者同步太慢,Leader 会把这个Follower 从ISR (Leader 维护的一个和Leader 保持同步的Follower集合)列表中 删除,重新创建一个Follower。

(6) Replica

  • 副本,为保证集群中的某个节点发生故障时,该节点上的partition 数据不丢失,且kafka 仍然能够继续工作,kafka提供了副本机制,一个topic 的每个分区都有若干个副本,一个leader 和若干个follower.

(7) Producer .

  • 生产者即数据的发布者,该角色将消息发布到Kafka的topic 中。
  • broker接收到生产者发送的消息后,broker 将该消息追加到当前用于追加数据的segment 文件中。
  • 生产者发送的消息,存储到一个partition 中,生产者也可以指定数据存储的partition。

(8) Consumer

  • 消费者可以从broker 中读取数据。消费者可以消费多个topic中的数据。

(9) Consumer Group (CG )

  • 消费者组,由多个consumer 组成。
  • 所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。可为每个消费者指定组名,若不指定组名则属于默认组。
  • 将多个消费者集中到一起去处理某一个Topic的数据,可以更快的提高数据的消费能力。
  • 消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费,防止数据被重复读取。
  • 消费者组之间互不影响。

(10) offset 偏移量

  • 可以唯一的标识一条消息
  • 偏移量决定读取数据的位置,不会有线程安全的问题,消费者通过偏移量来决定下次读取的消息(即消费位置)。
  • 消息被消费之后,并不被马上删除,这样多个业务就可以重复使用Kafka 的消息。
  • 某一个业务也可以通过修改偏移量达到重新读取消息的目的,偏移量由用户控制。
  • 消息最终还是会被删除的,默认生命周期为1周(7*24小时)。

(11) Zookeeper

  • Kafka通过Zookeeper 来存储集群的meta 信息。
  • 由于consumer在消费过程中可能会出现断电宕机等故障,consumer恢复后,需要从故障前的位置的继续消费,所以consumer 需要实时记录自己消费到了哪个offset,以便故障恢复后继续消费。
  • Kafka 0.9版本之前,consumer 默认将offset 保存在Zookeeper 中;从0.9版本开始,
    consumer默认将offset 保存在Kafka 一一个内置的topic 中,该topic为consumer_ offsets。


三、部署Zookeeper集群

1.下载安装包

官方下载地址:http://kafka.apache.org/downloads.html

cd /opt
wget https://mirrors.tuna.tsinghua.edu.cn/apache/kafka/2.7.1/kafka_2.13-2.7.1.tgz

2.安装Kafka

#先检查zookeeper是否安装成功
service zookeeper status



cd /opt/
#拖入安装包
tar zxvf kafka_2.13-2.7.1.tgz
mv kafka_2.13-2.7.1 /usr/local/kafka

//修改配置文件
cd /usr/local/kafka/config/
cp server.properties{,.bak}

vim server.properties
broker.id=0                                 #21行,broker的全局唯一编号,每个broker不能重复,因此要在其他机器上配置broker.id=1、 broker.id=2
listeners=PLAINTEXT://192.168.80.76:9092    #31行,指定监听的IP和端口,如果修改每个broker的IP需区分开来,也可保持默认配置不用修改
num.network.threads=3                       #42行,broker 处理网络请求的线程数量,一般情况下不需要去修改
num.io.threads=8                            #45行,用来处理磁盘I0的线程数量,数值应该大于硬盘数
socket.send.buffer.bytes=102400             #48行,发送套接字的缓冲区大小
socket.receive.buffer.bytes=102400          #51行,接收套接字的缓冲区大小
socket.request.max.bytes=104857600          #54行,请求套接字的缓冲区大小
log.dirs=/usr/local/kafka/logs              #60行,kafka运行 日志存放的路径,也是数据存放的路径
num.partitions=1                            #65行,topic在 当前broker.上的默认分区个数,会被topic创建时的指定参数覆盖
num.recovery.threads.per.data.dir=1         #69行,用来恢复和清理data下数据的线程数量
log.retention.hours=168                     #103行,segment文件 (数据文件)保留的最长时间,单位为小时,默认为7天,超时将被删除
log.segment.bytes=1073741824                #110行,一个segment文件最大的大小,默认为1G, 超出将新建一个新的segment文件
zookeeper.connect=192.168.80.10:2181,192.168.80.11:2181,192.168.80.12:2181    
#123行,配置连接Zookeeper集群地址

//修改环境变量
vim /etc/profile
##添加
export KAFKA_HOME=/usr/local/kafka
export PATH=$PATH:$KAFKA_HOME/bin

source /etc/profile
echo $PATH

//将配置文件复制到其他两台服务器
scp 

//配置 Zookeeper 启动脚本
vim /etc/init.d/kafka
#!/bin/bash
#chkconfig:2345 22 88
#description:Kafka Service Control Script
KAFKA_HOME='/usr/local/kafka'
case $1 in
start)
	echo "---------- Kafka 启动 ------------"
	${KAFKA_HOME}/bin/kafka-server-start.sh -daemon ${KAFKA_HOME}/config/server.properties
;;
stop)
	echo "---------- Kafka 停止 ------------"
	${KAFKA_HOME}/bin/kafka-server-stop.sh
;;
restart)
	$0 stop
	$0 start
;;
status)
	echo "---------- Kafka 状态 ------------"
	count=$(ps -ef | grep kafka | egrep -cv "grep|$$")
	if [ "$count" -eq 0 ];then
        echo "kafka is not running"
    else
        echo "kafka is running"
    fi
;;
*)
    echo "Usage: $0 {start|stop|restart|status}"
esac
//设置开机自启
chmod +x /etc/init.d/kafka
chkconfig --add kafka

//分别启动 Kafka
service kafka start

3.Kafka命令行操作

//创建topic
kafka-topics.sh --create --zookeeper 192.168.80.10:2181,192.168.80.11:2181,192.168.80.12:2181 --replication-factor 2 --partitions 3 --topic test

-------------------------------------------------------------------------------------
--zookeeper:定义 zookeeper 集群服务器地址,如果有多个 IP 地址使用逗号分割,一般使用一个 IP 即可
--replication-factor:定义分区副本数,1 代表单副本,建议为 2 
--partitions:定义分区数 
--topic:定义 topic 名称
-------------------------------------------------------------------------------------

//查看当前服务器中的所有 topic
kafka-topics.sh --list --zookeeper 192.168.80.10:2181,192.168.80.11:2181,192.168.80.12:2181 

//查看某个 topic 的详情
kafka-topics.sh  --describe --zookeeper 192.168.80.10:2181,192.168.80.11:2181,192.168.80.12:2181 

//发布消息
kafka-console-producer.sh --broker-list 192.168.80.10:9092,192.168.80.11:9092,192.168.80.12:9092  --topic test

//消费消息
kafka-console-consumer.sh --bootstrap-server 192.168.80.10:9092,192.168.80.11:9092,192.168.80.12:9092 --topic test --from-beginning

-------------------------------------------------------------------------------------
--from-beginning:会把主题中以往所有的数据都读取出来
-------------------------------------------------------------------------------------

//修改分区数
kafka-topics.sh --zookeeper 192.168.80.10:2181,192.168.80.11:2181,192.168.80.12:2181 --alter --topic test --partitions 6

//删除 topic
kafka-topics.sh --delete --zookeeper 192.168.80.10:2181,192.168.80.11:2181,192.168.80.12:2181 --topic test

四、Kafka 架构深入

1、Kafka 工作流程及文件存储机制

  • Kafka 中消息是以 topic 进行分类的,生产者生产消息,消费者消费消息,都是面向 topic 的。

  • topic 是逻辑上的概念,而 partition 是物理上的概念,每个 partition 对应于一个 log 文件,该 log 文件中存储的就是 producer 生产的数据。Producer 生产的数据会被不断追加到该 log 文件末端,且每条数据都有自己的 offset。消费者组中的每个消费者,都会实时记录自己消费到了哪个 offset,以便出错恢复时,从上次的位置继续消费。

  • 由于生产者生产的消息会不断追加到 log 文件末尾,为防止 log 文件过大导致数据定位效率低下,Kafka 采取了分片和索引机制,将每个 partition 分为多个 segment。每个 segment 对应两个文件:“.index” 文件和 “.log” 文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic名称+分区序号。例如,test 这个 topic 有三个分区, 则其对应的文件夹为 test-0、test-1、test-2。

  • index 和 log 文件以当前 segment 的第一条消息的 offset 命名。

  • “.index” 文件存储大量的索引信息,“.log” 文件存储大量的数据,索引文件中的元数据指向对应数据文件中 message 的物理偏移地址。

2、数据可靠性保证

  • 为保证 producer 发送的数据,能可靠的发送到指定的 topic,topic 的每个 partition 收到 producer 发送的数据后, 都需要向 producer 发送 ack(acknowledgement 确认收到),如果 producer 收到 ack,就会进行下一轮的发送,否则重新发送数据。

3、数据一致性问题

  • LEO:指的是每个副本最大的 offset;
  • HW:指的是消费者能见到的最大的 offset,所有副本中最小的 LEO。

==(1)follower 故障 ==

  • follower 发生故障后会被临时踢出 ISR(Leader 维护的一个和 Leader 保持同步的 Follower 集合),待该 follower 恢复后,follower 会读取本地磁盘记录的上次的 HW,并将 log 文件高于 HW 的部分截取掉,从 HW 开始向 leader 进行同步。等该 follower 的 LEO 大于等于该 Partition 的 HW,即 follower 追上 leader 之后,就可以重新加入 ISR 了。

==(2)leader 故障 ==

  • leader 发生故障之后,会从 ISR 中选出一个新的 leader, 之后,为保证多个副本之间的数据一致性,其余的 follower 会先将各自的 log 文件高于 HW 的部分截掉,然后从新的 leader 同步数据。

==注:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。 ==

4、ack 应答机制

  • 对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等 ISR 中的 follower 全部接收成功。所以 Kafka 为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡选择。

  • 当 producer 向 leader 发送数据时,可以通过 request.required.acks 参数来设置数据可靠性的级别:
    0:这意味着producer无需等待来自broker的确认而继续发送下一批消息。这种情况下数据传输效率最高,但是数据可靠性确是最低的。当broker故障时有可能丢失数据。
    1(默认配置):这意味着producer在ISR中的leader已成功收到的数据并得到确认后发送下一条message。如果在follower同步成功之前leader故障,那么将会丢失数据。
    ●-1(或者是all):producer需要等待ISR中的所有follower都确认接收到数据后才算一次发送完成,可靠性最高。但是如果在 follower 同步完成后,broker 发送ack 之前,leader 发生故障,那么会造成数据重复。

三种机制性能依次递减,数据可靠性依次递增。

  • 注:在 0.11 版本以前的Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局去重。在 0.11 及以后版本的 Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指 Producer 不论向 Server 发送多少次重复数据, Server 端都只会持久化一条。

五、Filebeat+Kafka+ELK

1.部署 Zookeeper+Kafka 集群

2.部署 Filebeat

cd /usr/local/filebeat

vim filebeat.yml
filebeat.prospectors:
- type: log
  enabled: true
  paths:
    - /var/log/messages
    - /var/log/*.log
......
#添加输出到 Kafka 的配置
output.kafka:
  enabled: true
  hosts: ["192.168.80.10:9092","192.168.80.11:9092","192.168.80.12:9092"]    #指定 Kafka 集群配置
  topic: "filebeat_test"    #指定 Kafka 的 topic
  
#启动 filebeat
./filebeat -e -c filebeat.yml

3.部署 ELK,在 Logstash 组件所在节点上新建一个 Logstash 配置文件

cd /etc/logstash/conf.d/

vim filebeat.conf
input {
    kafka {
        bootstrap_servers => "192.168.80.10:9092,192.168.80.11:9092,192.168.80.12:9092"
        topics  => "filebeat_test"
        group_id => "test123"
        auto_offset_reset => "earliest"
    }
}

output {
    elasticsearch {
        hosts => ["192.168.80.30:9200"]
        index => "filebeat-%{+YYYY.MM.dd}"
    }
    stdout {
        codec => rubydebug
    }
}

#启动 logstash
logstash -f filebeat.conf

4.浏览器访问 http://192.168.80.30:5601

登录 Kibana,单击“Create Index Pattern”按钮添加索引“filebeat-*”,单击 “create” 按钮创建,单击 “Discover” 按钮可查看图表信息及日志信息。

以上是关于MQ之主流MQ:kafaka+RocketMQ+RabbitMQ对比的主要内容,如果未能解决你的问题,请参考以下文章

消息队列(MQ)与kafaka概述(Filebeat+Kafka+ELK部署)

消息中间件之MQ详解及四大MQ比较

消息中间件之MQ详解及四大MQ比较

说说 MQ 之 RocketMQ ( 二 )

说说 MQ 之 RocketMQ ( 一 )

说说 MQ 之 RocketMQ ( 三 )