什么是红黑树?这篇讲解很全面!
Posted Github中文社区
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了什么是红黑树?这篇讲解很全面!相关的知识,希望对你有一定的参考价值。
链接:https://juejin.im/post/5e509b27f265da57455b3f33
大家好,我是hub哥,这里为大家整理一份红黑树相关知识
红黑树(Red Black Tree)是一种自平衡的二叉搜索树(Self-balancing Binary Search Tree)。以前也叫做平衡二叉 B 树(Symmetric Binary B-tree)。
预备知识
平衡二叉搜索树(Balanced Binary Search Tree),英文简称 BBST。经典常见的平衡二叉搜索树是 AVL 树和红黑树。
二叉搜索树
二叉搜索树(Binary Search Tree)是二叉树的一种,英文简称 BST。又称为二叉查找树、二叉排序树。
它的特点是任何一个结点的值都大于其左子树的所有结点的值,任何一个结点的值都小于其右子树的所有结点的值。
平衡
平衡(Balance):
就是当结点数量固定时,左右子树的高度越接近,这棵二叉树越平衡(高度越低)。而最理想的平衡就是完全二叉树/满二叉树,高度最小的二叉树。
一棵二叉搜索树平均时间复杂度可以认为是树的高度 O(h)。像左边这棵,结点的左右子树的高度接近,属于一棵平衡二叉搜索树,O(h) = O(logn);而右边这棵,高度达到了最大,已经退化成了链表,O(h)=O(n)。
改进二叉搜索树
当二叉树退化成链表时,性能是很低的,所以我们需要在结点的插入、删除操作之后,想办法让二叉搜索树恢复平衡(减小树的高度)。
但是如果为了追求最理想的平衡,而增加了时间复杂度也不是很有必要,因此比较合理的方案就是:用尽量少的调整次数达到适度平衡。
AVL 树是最早发明的自平衡二叉搜索树之一,它取名自两位发明家的名字:G.M.Adelson-Velsky 和 E.M.Landis。
平衡因子
(Balance Factor)
:
某结点的左右子树的高度差。
每个叶子结点的平衡因子都是 0。看这棵二叉搜索树,红色数字标注了每个结点对应的平衡因子。
举例
:
8 的左子树高度为 2,右子树高度为 1,因此它的平衡因子为 1;5 的左子树高度为 0,右子树高度为 3,因此它的平衡因子为 -3;4 的左子树高度为 2,右子树高度为 4,因此它的平衡因子为 -2;
再看这棵 AVL 树和它每个结点对应的平衡因子
:
可以看到 AVL 树具有以下特点:
B 树(Balanced Tree)是一种平衡的多路搜索树,多用于文件系统、数据库的实现。
特点如下:
B 树 VS 二叉搜索树
这是一棵二叉搜索树,通过某些父子结点合并,恰好能与上面的 B 树对应。
我们可以得到结论:
红黑树定义和性质
为了保证平衡,红黑树必须满足以下性质:
红黑树与 B 树的等价变换
根据上面的性质,可以画出这样一棵红黑树。接下来对红黑树做等价变换,即将所有的红色结点上升一层与它的父结点放在同一行,这就很像一棵 4 阶 B 树,转换效果如下图所示。
可以得出结论:
红黑树与 4 阶 B 树(2-3-4树)具有等价性
黑色结点与红色子结点融合在一起,形成 1 个 B 树结点
红黑树的黑色结点个数与 4 阶 B 树的结点总个数相等
红黑树的基本操作
当我们对一棵平衡二叉搜索树进行插入、删除的时候,很可能会让这棵树变得失衡(最坏可能导致所有祖先结点失衡,但是父结点和非祖先结点都不可能失衡)。
为了达到平衡,需要对树进行旋转。而红黑树能够达到自平衡,靠的也就是左旋、右旋和变色。
旋转操作是局部的。当一侧子树的结点少了,向另一侧“借”一些结点;当一侧子树的结点多了,则“租”一些结点给另一侧。
N-node:当前结点
P-parent:父结点
S-sibling:兄弟结点
U-uncle:叔父结点(P 的兄弟结点)
G-grand:祖父结点(P 的父结点)
◆ 左旋
左旋指的是以某个结点作为支点(旋转结点),其右子结点变为旋转结点的父结点,右子结点的左子结点变为旋转结点的右子结点,左子结点保持不变。
不考虑结点颜色,可以看到左旋只影响旋转结点和其右子树的结构,把右子树的结点往左子树移动。
右旋指的是以某个结点作为支点(旋转结点),其左子结点变为旋转结点的父结点,左子结点的右子结点变为旋转结点的左子结点,右子结点保持不变。
不考虑结点颜色,可以看
到右旋只影响旋转结点和其左子树的结构,把左子树的结点往右子树移动。
变色:如果当前结点的父结点和叔父结点是红色,那么:
把父结点和叔父结点变为黑色
把祖父结点变为红色
把指针定义到祖父结点
左旋:
当前结点是右子树,且父结点是红色,叔父结点是黑色,对它的父结点左旋。
右旋:
当前结点是左子树,且父结点是红色,叔父结点是黑色,那么
:
把父结点变为黑色
把祖父结点变为红色
对祖父结点右旋
红黑树搜索
由于红黑树本来就是平衡二叉搜索树,并且搜索也不会破坏树的平衡,所以搜索算法也与平衡二叉搜索树一致:
具体步骤如下:
从根结点开始检索,把根结点设置为当前结点。
若当前结点为空,返回 nil。
若当前结点不为空,比较当前结点 key 与搜索 key 的大小。
若当前结点 key 等于搜索 key,那么该 key 就是搜索目标,返回当前结点。
若当前结点 key 大于搜索 key,把当前结点的左子结点设置为当前结点,重复步骤 2。
若当前结点 key 小于搜索 key,把当前结点的右子结点设置为当前结点,重复步骤 2。
红黑树插入
从根结点开始检索。
若根结点为空,那么插入结点设为根结点,结束。
若根结点不为空,那么把根结点设为当前结点。
若当前结点为 nil,返回当前结点的父结点,结束。
若当前结点 key 等于搜索 key,那么该 key 所在结点就是插入结点,更新结点的值,结束。
若当前结点 key 大于搜索 key,把当前结点的左子结点设置为当前结点,重复步骤 4。
若当前结点 key 小于搜索 key,把当前结点的右子结点设置为当前结点,重复步骤 4。
建议新添加的结点默认为红色,因此这样能够让红黑树的性质尽快满足。不过如果添加的结点是根结点,设为黑色即可。
二叉搜索树中不能插入相同元素,既然结点的 key 已经存在,红黑树也已平衡,无需重复插入。
将插入结点设为将要替换结点的颜色
更新当前结点的值为插入结点的值
插入的结点默认是红色的,当它的父结点是黑色时,并不会破坏平衡。
如果插入结点的父结点为红色,那么父结点不可能为根结点,所以插入结点总是存在祖父结点。这点很重要,后续的旋转操作需要祖父结点的参与。
由红黑树性质 4 可知:红色结点不能连续。那么此时该插入子树的红黑层数的情况是:黑-红-红。显然最简单的处理方式就是将其改为:红-黑-红。
将父结点和叔父结点变为黑色
将祖父结点变为红色
将祖父结点设置为当前插入结点
场景 4.2
:叔父结点不存在或为黑色,插入结点的父结点是祖父结点的左子结点
这种场景下,叔父结点所在的子树的黑色结点就比父结点所在子树的多,不满足红黑树的性质 5。
将父结点变为黑色
将祖父结点变为红色
将祖父结点右旋
将父结点进行左旋
将父结点设为插入结点,得到场景 4.2.1
进行场景 4.2.1 的处理
场景 4.3
:叔父结点不存在或为黑色,插入结点的父结点是祖父结点的右子结点
将父结点变为黑色
将祖父结点变为红色
对祖父结点进行左旋
将父结点进行右旋
将父结点设置为插入结点,得到场景 4.3.1
进行场景 4.3.1 的处理
下面举个例子,往一棵红黑树中插入元素,整棵树的变换如下图所示:
红黑树插入
如果不存在目标结点,忽略本次操作;如果找到目标结点,删除后进行自平衡处理。
我们可以发现,另外两种二叉树的删除场景都可以通过相互转换变为场景一。
在场景二情况下:
删除结点用其唯一的子结点替换,子结点替换为删除结点后,可以认为删除的是子结点,若子结点又有两个子结点,那么相当于转换为场景三,一直自顶向下转换,总是能转换为场景一。
在场景三情况下:
删除结点用后继结点,如果后继结点有右子结点,那么相当于转换为场景二,否则转为场景一。
综上所述,删除的结点可以看作删除替换结点,且替换结点最后总是在树末。
为了方面理解,我们先约定一下结点的叫法:
R:替换结点
P:替换结点的父结点
S:替换结点的兄弟结点
SL:兄弟结点的左子结点
SR:兄弟结点的右子结点
灰色:结点颜色可能是红色,也可能是黑色
注意
:
R 是即将被替换到删除结点的位置的替换结点,在删除前,它还在原来所在位置参与树的子平衡,平衡后再替换到删除结点的位置,才算删除完成。
我们把替换结点换到了删除结点的位置时,由于替换结点为红色,删除也了不会影响红黑树的平衡,只要把替换结点的颜色变为删除的结点的颜色即可重新平衡。
当替换结点是黑色时,就必须进行自平衡处理了,我们可以通过区分替换结点是其父结点的左子结点还是右子结点,来做不同的旋转,使树重新平衡。
若兄弟结点是红结点,那么根据红黑树性质 4,兄弟结点的父结点和子结点肯定为黑色,按照下图方式处理,得到删除场景 2.1.2.3。
将兄弟结点变为黑色
将父结点变为红色
对父结点进行左旋,得到场景 2.1.2.3
进行场景 2.1.2.3 的处理
当兄弟结点为黑时,其父结点和子结点的具体颜色也无法确定,此时又得考虑多种子场景。
场景 2.1.2.1
:
替换结点的兄弟结点的右子结点为红色,左子结点任意颜色
即将删除的左子树的一个黑色结点,显然左子树的黑色结点少 1 了,然而右子结点又是红色,那么我们直接向右子树“借”个红结点来补充黑结点,并进行旋转处理。
将兄弟结点的颜色变为父结点的颜色
将父结点变为黑色
将兄弟结点的右子结点变为黑色
对父结点进行左旋
场景 2.1.2.2
:
替换结点的兄弟结点的右子结点为黑色,左子结点为红色
兄弟结点所在的子树有红结点,又可以向兄弟子树“借”个红结点过来,这就转换回了场景 2.1.2.1。
将兄弟结点变为红色
将兄弟结点的左子结点变为黑色
对兄弟结点进行右旋,得到场景 2.1.2.1
进行场景 2.1.2.1 的处理
场景 2.1.2.3
:
替换结点的兄弟结点的子结点都为黑色
兄弟子树没有红结点可以“借”了,再向父结点“借”。如果父结点是黑色,为了让父结点在所在的子树中保证平衡(替换结点即将删除,少了一个黑色结点,子树也需要少一个)先把兄弟结点变为红色,再让父结点成为新的替换结点。
将兄弟结点变为黑色
将父结点变为红色
对父结点进行右旋,得到场景 2.2.2.3
进行场景 2.2.2.3 的处理
场景 2.2.2.1
:
替换结点的兄弟结点的左子结点为红色,右子结点任意颜色
将兄弟结点的颜色变为父结点的颜色
将父结点变为黑色
将兄弟结点的左子结点变为黑色
对父结点进行右旋
场景 2.2.2.2
:
替换结点的兄弟结点的左子结点为黑色,右子结点为红色
将兄弟结点变为红色
将兄弟结点的右子结点设为黑色
对兄弟结点进行左旋,得到场景 2.2.2.1
进行场景 2.2.2.1 的处理
场景 2.2.2.3
:
替换结点的兄弟结点的子结点都为黑色
以上是关于什么是红黑树?这篇讲解很全面!的主要内容,如果未能解决你的问题,请参考以下文章
为什么要有红黑树?什么是红黑树?画了20张图,看完这篇你就明白了
什么是红黑树?看完这篇你就明白了!
漫画算法:什么是红黑树?
什么是红黑树?
数据结构之红黑树
半小时看懂红黑树——全网最易理解教程